中国自然资源航空物探遥感中心主办
地质出版社出版

三维Tesseroid网格模型重力异常正演方法及并行算法

王博, 郭良辉, 崔亚彤, 王祥. 2021. 三维Tesseroid网格模型重力异常正演方法及并行算法. 物探与化探, 45(6): 1597-1605. doi: 10.11720/wtyht.2021.0078
引用本文: 王博, 郭良辉, 崔亚彤, 王祥. 2021. 三维Tesseroid网格模型重力异常正演方法及并行算法. 物探与化探, 45(6): 1597-1605. doi: 10.11720/wtyht.2021.0078
WANG Bo, GUO Liang-Hui, CUI Ya-Tong, Wang Xiang. 2021. The approach to gravity forward calculation of 3D Tesseroid mesh model and its parallel algorithm. Geophysical and Geochemical Exploration, 45(6): 1597-1605. doi: 10.11720/wtyht.2021.0078
Citation: WANG Bo, GUO Liang-Hui, CUI Ya-Tong, Wang Xiang. 2021. The approach to gravity forward calculation of 3D Tesseroid mesh model and its parallel algorithm. Geophysical and Geochemical Exploration, 45(6): 1597-1605. doi: 10.11720/wtyht.2021.0078

三维Tesseroid网格模型重力异常正演方法及并行算法

  • 基金项目:

    国家自然科学基金面上项目(41774098)

    国家自然科学基金面上项目(41974101)

    中央高校基本科研业务费专项资金

    地质过程与矿产资源国家重点实验室科技部专项经费

详细信息
    作者简介: 王博(1998-),男,主要从事综合地球物理研究工作。Email:2010200038@cugb.edu.cn
  • 中图分类号: P631

The approach to gravity forward calculation of 3D Tesseroid mesh model and its parallel algorithm

  • 三维网格模型的正演计算是重力资料反演的基础。高精度、高效率的正演有利于提高反演解释质量。针对大尺度、地表观测面研究区的高精度、高效率重力正演问题,本文给出球坐标系三维Tesseroid网格模型重力异常正演方法及并行算法。其中,正演算法采用改进的高斯—勒让德积分法实现大尺度、地表观测面的重力异常高精度计算,并行算法采用基于OpenMP的MATLAB任务并行算法实现高效率计算。理论模型和华东岩石圈三维模型数据试验验证了本文方法的有效性。本文方法为高效的大尺度重力场模拟和三维反演提供技术支撑。
  • 加载中
  • [1]

    Heck B, Seitz K. A comparison of the Tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling[J]. J. Geodesy, 2007, 81(2):121-136.

    [2]

    杨学祥. 布格改正和地形改正的误差——关于区域重力测量中地形改正最大半径的讨论[J]. 地壳形变与地震, 1992(2):1-6.

    [3]

    Yang X X. Errors in Bouguer and topographic correction—Discussion on the maximum radius of topographic correction in regional gravity measurement[J]. Crustal Deformation and Earthquake, 1992(2):1-6.

    [4]

    梁青. 月球重力异常特征与三维密度成像研究[D]. 武汉:中国地质大学(武汉), 2010.

    [5]

    Liang Q. Gravity anomaly features and 3D density imaging of the moon[D]. Wuhan: China University of Geosciences (Wuhan), 2010.

    [6]

    Grombein T, Seitz K, Heck B. Optimized formulas for the gravitational field of a Tesseroid[J]. J.Geodesy, 2013, 87(7):645-660.

    [7]

    Uieda L, Barbosa V C FL. Fast nonlinear gravity inversion in spherical coordinates with application to the South American Moho[J]. Geophys. J. Int., 2017, 208(1):162-176.

    [8]

    Asgharzadeh M F Von Frese R R B Kim H R. Spherical prism magnetic effects by Gauss-Legendre quadrature integration[J]. Geophys. J. Int., 2008, 173(1):315-333.

    [9]

    Zhang Y, Wu Y L, Yan J G, et al. 3D inversion of full gravity gradient tensor data in spherical coordinate system using local north oriented frame[J]. Earth, Planets and Space, 2018, 70(58):1-23.

    [10]

    王祥, 郭良辉. 球坐标系密度界面反演方法及在华南大陆的应用[J]. 物探与化探, 2020, 44(5):1161-1171.

    [11]

    Wang X, Guo L H. Density interface inversion method in spherical coordinate and its application in South China mainland[J]. Geophysical and Geochemical Exploration, 2020, 44(5):1161-1171.

    [12]

    Hao A W, Guo L H, Wang X. The apparent density mapping approach in spherical coordinates and the crustal density distribution of Chinese mainland[J]. IEEE Access, 2019, 7(1):160705-160717.

    [13]

    Cui Y T, Guo L H. A wavenumber-domain iterative approach for 3D imaging of magnetic anomalies and gradients with depth constraints[J]. Journal of Geophysics and Engineering, 2019, 16(6):1032-1047.

    [14]

    Zhao G D, Chen B, Uieda L, et al. Efficient 3D large-scale forward-modeling and inversion of gravitational fields in spherical coordinates with application to lunar mascons[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4):4157-4173.

    [15]

    陈召曦, 孟小红, 郭良辉, 等. 基于GPU 并行的重力、重力梯度三维正演快速计算及反演策略[J]. 地球物理学报, 2012, 55(12):4069-4077.

    [16]

    Chen Z X, Meng X H, Guo L H, et al. Three-dimensional fast forward modeling and the inversion strategy for large scale gravity and gravimetry data based on GPU[J]. Chinese Journal of Geophysics, 2012, 55(12):4069-4077.

    [17]

    Hou Z L, Wei X H, Huang D N, et al. Full tensor gravity gradiometry data inversion: performance analysis of parallel computing algorithms[J]. Applied Geophysics, 2015, 12(3):292-302.

    [18]

    Hou Z L, Huang D N. Multi-GPU parallel algorithm design and analysis for improved inversion of probability tomography with gravity gradiometry data[J]. Journal of Applied Geophysics, 2017, 144:18-27.

    [19]

    Hou Z L, Huang D N, Wang E D, et al. 3D density inversion of gravity gradiometry data with a multilevel hybrid parallel algorithm[J]. Applied Geophysics, 2019, 16(2):141-152.

    [20]

    周雪, 于平, 翁爱华, 等. 基于MPI和OpenMP的重力及重力梯度数据并行正演算法研究[J]. 世界地质, 2018, 37(3):897-904.

    [21]

    Zhou X, Yu P, Weng A H, et al. Parallel forward modelling algorithm with gravity and gravity gradient data based on MPI and OpenMP[J]. Global Geology, 2018, 37(3):897-904.

    [22]

    陈国良. 并行计算:结构;算法;编程[M]. 北京: 高等教育出版社, 2003:83-88.

    [23]

    Chen G L. Parallel: construction; algorithms; programming [M]. Beijing: Higher Education Press, 2003:83-88.

    [24]

    Shen W S, Michael H R, Kang D, et al. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophys. J. Int., 2016, 206(2):954-979.

    [25]

    Brocher T M. Empirical relations between elastic wavespeeds and density in the Earth's crust[J]. Bull. Seismol. Soc. Am., 2005, 95(6):2081-2092.

    [26]

    Pavlis N K, Holmes S A, Kenyon S C, et al. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)[J]. J. Geophys. Res., 2012, 117(4):B04406.

  • 加载中
计量
  • 文章访问数:  887
  • PDF下载数:  93
  • 施引文献:  0
出版历程
收稿日期:  2021-02-09
修回日期:  2021-12-20
刊出日期:  2021-12-21

目录