中国自然资源航空物探遥感中心主办
地质出版社出版

iTilt-Euler法在重力数据处理及断裂解释中的应用

陈青, 孙帅, 丁成艺, 黄小宇, 陈浩, 申鹏, 罗港, 魏耀聪. 2021. iTilt-Euler法在重力数据处理及断裂解释中的应用. 物探与化探, 45(6): 1578-1587. doi: 10.11720/wtyht.2021.0284
引用本文: 陈青, 孙帅, 丁成艺, 黄小宇, 陈浩, 申鹏, 罗港, 魏耀聪. 2021. iTilt-Euler法在重力数据处理及断裂解释中的应用. 物探与化探, 45(6): 1578-1587. doi: 10.11720/wtyht.2021.0284
CHEN Qing, SUN Shuai, DING Cheng-Yi, HUANG Xiao-Yu, CHEN Hao, SHEN Peng, LUO Gang, WEI Yao-Cong. 2021. Application of iTilt-Euler deconvolution in gravity data processing and fault system interpretation. Geophysical and Geochemical Exploration, 45(6): 1578-1587. doi: 10.11720/wtyht.2021.0284
Citation: CHEN Qing, SUN Shuai, DING Cheng-Yi, HUANG Xiao-Yu, CHEN Hao, SHEN Peng, LUO Gang, WEI Yao-Cong. 2021. Application of iTilt-Euler deconvolution in gravity data processing and fault system interpretation. Geophysical and Geochemical Exploration, 45(6): 1578-1587. doi: 10.11720/wtyht.2021.0284

iTilt-Euler法在重力数据处理及断裂解释中的应用

  • 基金项目:

    国家自然科学基金项目(41702210)

    重庆市基础科学与前沿技术研究专项(cstc2017jcyjAX0370)

    重庆市教委科学技术研究项目(KJQN201901535)

    重庆科技学院博士教授科研启动基金项目(CK2016B12)

详细信息
    作者简介: 陈青(1984-),女,博士,2015年毕业于西北大学,主要研究方向为构造地球物理。Email:chenqing0144@126.com
  • 中图分类号: P631

Application of iTilt-Euler deconvolution in gravity data processing and fault system interpretation

  • 为改善欧拉反演结果的收敛性,本文采用不依赖于构造指数的改进Tilt-Euler(iTilt-Euler)进行计算,并利用水平总梯度倾斜角峰值(TAHG)约束法约束反演数据,优化计算结果。模型试算结果表明,采用TAHG法约束的iTilt-Euler反演结果的收敛性得到了有效提高,且为深源地质体的位置和深度提供了更多信息。在肯尼亚ANZA盆地某区块重力数据处理中的应用表明,TAHG法约束下的iTilt-Euler反演解连续性较好,主要呈NW向,其次是NE向,且NW向展布的解延伸长、深度大,反映为控制区内构造单元边界的基底断裂,被NE向展布的盖层断裂所切割。此外,研究区东南部发育一条NNE向的深断裂,切割了NW向及NE向断裂,推测其可能控制了区域构造单元的东南边界。应用结果表明,iTilt-Euler法和TAHG法可为断裂解释提供可靠的研究手段,具有较好的实用性。
  • 加载中
  • [1]

    Thompson D T. EULDPH—A new technique for making computer-assisted depth estimates from magnetic data[J]. Geophysics, 1982, 47(1):31-37.

    [2]

    Reid A B, Allsop J M, Granser H, et al. Magnetic interpretation in three dimensions using Euler deconvolution[J]. Geophysics, 1990, 55(1):80-91.

    [3]

    姚长利, 管志宁, 吴其斌, 等. 欧拉反演方法分析及实用技术改进[J]. 物探与化探, 2004, 28(2):150-155.

    [4]

    Yao C L, Guan Z N, Wu Q B, et al. An analysis of Euler deconvolution and its improvement[J]. Geophysical and Geochemical Exploration, 2004, 28(2):150-155.

    [5]

    Hsu S K. Imaging magnetic sources using Euler's equation[J]. Geophysical Prospecting, 2002, 50:15-25.

    [6]

    Salem A, Ravat D. A combined analytic signal and Euler method (AN-EUL) for automatic interpretation of magnetic data[J]. Geophysics, 2003, 68(6):1952-1961.

    [7]

    Salem A, Smith R. Generalized magnetic tilt-Euler deconvolution[C]// SEG Expanded Abstracts, 2007: 790-794.

    [8]

    范美宁, 江裕标, 张景仙. 不同数据用于欧拉方程的模型计算[J]. 地球物理学进展, 2008, 23(4):1250-1253.

    [9]

    Fan M N, Jiang Y B, Zhang J X. Model calculation of Euler's equation for different data types[J]. Progress in Geophysics, 2008, 23(4):1250-1253.

    [10]

    Ma G Q. The application of extended Euler deconvolution method in the interpretation of potential field data[J]. Journal of Applied Geophysics, 2014, 107(8):188-194.

    [11]

    Neil C, Whaler K A, Reid A B. Extensions to Euler's method for three-dimensional potential field interpretation[C]// 53rd EAEG meeting, Florence, Expanded Abstracts, 1991:416-417.

    [12]

    Fairhead J D, Bennett K J, Gordon D R H, et al. Euler: beyond the ;Black Box[C]// SEG Expanded Abstracts, 1994: 422-424.

    [13]

    Keating P B. Weighted Euler deconvolution of gravity data[J]. Geophysics, 1998, 63(5):1595-1603.

    [14]

    范美宁, 孙运生, 田庆君. 关于欧拉反褶积方法计算中的一点改进[J]. 物探化探计算技术, 2005, 27(2):171-174.

    [15]

    Fan M N, Sun Y S, Tian Q J. An improvement on calculation of Euler deconvolution[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2005, 27(2):171-174.

    [16]

    Davis K, Li Y. Enhancement of depth estimation techniques with amplitude analysis[C]// SEG Expanded Abstracts, 2009: 908-912.

    [17]

    周勇, 曹书锦, 侯萍萍, 等. 重力场欧拉反褶积最优解提取[J]. 物探化探计算技术, 2017, 39(5):598-604.

    [18]

    Zhou Y, Cao S J, Hou P P, et al. Extraction optimal solution of Euler deconvolution for gravity data[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2017, 39(5):598-604.

    [19]

    Gerovska D, Araúzo-Bravo M J. Automatic interpretation of magnetic data based on Euler deconvolution with unprescribed structural index[J]. Computers & Geosciences, 2003, 29(8):949-960.

    [20]

    Ugalde H, Morris B. Cluster analysis of Euler deconvolution solutions: New filtering techniques and actual link to geological structure[C]// SEG Expanded Abstracts, 2008:794-798.

    [21]

    Salem A, Williams S, Fairhead D, et al. Interpretation of magnetic data using tilt-angle derivatives[J]. Geophysics, 2008, 73(1):L1-L10.

    [22]

    Beiki M. TSVD analysis of Euler deconvolution to improve estimating magnetic source parameters: An example from the Sele area, Sweden[J]. Journal of Applied Geophysics, 2013, 90:82-91.

    [23]

    Barbosa V C F, Silva J B C, Medeiros W E. Making Euler deconvolution applicable to small ground magnetic surveys[J]. Journal of Applied Geophysics, 2000, 43(1):55-68.

    [24]

    郭志宏. 航磁及梯度数据正反演解释方法技术实用化改进及应用[D]. 北京:中国地质大学(北京), 2004.

    [25]

    Guo Z H. The practical improvement of forward and inversion technique on aeromagnetic gradient data and its application[D]. Beijing:China University of Geoscience (Beijing), 2004.

    [26]

    鲁宝亮, 范美宁, 张原庆. 欧拉反褶积中构造指数的计算与优化选取[J]. 地球物理学进展, 2009, 24(3):1027-1031.

    [27]

    Lu B L, Fan M N, Zhang Y Q. The calculation and optimization of structure index in Euler deconvolution[J]. Progress in Geophysics, 2009, 24(3):1027-1031.

    [28]

    曹书锦, 朱自强, 鲁光银. 基于自适应模糊聚类分析的重力张量欧拉反褶积解[J]. 中南大学学报:自然科学版, 2012, 43(3):1033-1039.

    [29]

    Cao S J, Zhu Z Q, Lu G Y. Gravity tensor Euler Deconvolution solutions based on adaptive fuzzy cluster analysis[J]. Journal of Central South Unirersity:Science and Teclmology, 2012, 43(3):1033-1039.

    [30]

    Miller H G, Singh V. Potential field tilt—a new concept for location of potential field sources[J]. Journal of Applied Geophysics, 1994, 32(2-3):213-217.

    [31]

    王想, 李桐林. Tilt梯度及其水平导数提取重磁源边界位置[J]. 地球物理学进展, 2004, 19(3):625-630.

    [32]

    Wang X, Li T L. Locating the boundaries of magnetic or gravity sources with Tdr and Tdr-Thdr methods[J]. Progress in Geophysics, 2004, 19(3):625-630.

    [33]

    王万银, 邱之云, 杨永, 等. 位场边缘识别方法研究进展[J]. 地球物理学进展, 2010, 25(1):196-210.

    [34]

    Wang W Y, Qiu Z Y, Yang Y, et al. Some advances in the edge recognition of potential field[J]. Progress in Geophysics, 2010, 25(1):196-210.

    [35]

    刘鹏飞, 刘天佑, 杨宇山, 等. Tilt梯度算法的改进与应用:以江苏韦岗铁矿为例[J]. 地球科学:中国地质大学学报, 2015, 40(12):2091-2102.

    [36]

    Liu P F, Liu T Y, Yang Y S, et al. An improved tilt angle method and its application: A case of Weigang iron ore deposit, Jiangsu[J]. Earth Science-Journal of China University of Geosciences, 2015, 40(12):2091-2102.

    [37]

    Huang L, Zhang H L, Sekelania S, et al. An improved Tilt-Euler deconvolution and its application on a Fepolymetallic deposit[J]. Ore Geology Reviews, 2019, 114:103-114.

    [38]

    Ferreira F J F, de Souza J, de B. e S. Bongiolo A, et al. Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle[J]. Geophysics, 2013, 78(3):J33-J41.

    [39]

    Greene L C, Richards D R, Johnson R A. Crustal structure and tectonic evolution of the Anza rift, northern Kenya[J]. Tectonophysics, 1991, 197:203-211.

    [40]

    Bosworth W, Morley C K. Structural and stratigraphic evolution of the Anza rift, Kenya[J]. Tectonophysics, 1994, 236:93-115.

    [41]

    西安石油大学. 肯尼亚ANZA盆地9、10A区块重磁震联合解释报告[R]. 2007.

    [42]

    Xi'an Shiyou University. The research of integrated interpretation of gravity, aeromagnetics and seismic data of block 9 and 10A of ANZA basin in Kenya_Atlas contents[R]. 2007.

  • 加载中
计量
  • 文章访问数:  735
  • PDF下载数:  85
  • 施引文献:  0
出版历程
收稿日期:  2021-05-18
修回日期:  2021-12-20
刊出日期:  2021-12-21

目录