Affect of configuration parameters of geobody on regularization downward continuation imaging by successive layer optimization
-
摘要: 重磁位场逐层截频优化正则化下延成像技术可用于研究地质体的形态和物性分布特征。由于不同形状地质体可能有相似的重磁异常,重磁位场下延存在多解性。通过对4种基本形体重磁位场波谱特征对比研究及对35组不同形体重力场下延成像参数优选,获得地质体的综合形态参数与波谱形状校正系数的回归方程,并构建了形态滤波因子。利用带形态滤波因子的逐层优化正则化下延成像可提高不同形状长方体中心深度的归位精度。结合地震构造特征和形态参数回归方程确定的形态滤波因子,对川西枫顺场地区重力资料进行逐层优化下延成像,与地震剖面及测井密度曲线整体特征基本一致,证实了带形态滤波因子逐层优化正则化下延方法技术的可行性和有效性。Abstract: Regularization downward continuation imaging by successive layer optimization (DCSLO) can be used to study the geometrical configuration and physical distribution of geological body(geobody). Due to possible similar features of potential fields for some bodies of different geometrical configurations, the downward continuation imaging is of no-uniqueness. From spectral study of 4 basic configurations of geological bodies and parameter selection for optimum downward continuation for the 35 gravity models of different configurations, a regressive formulas between configuration parameter and shape correction coefficient is obtained and consequently a configuration filter operator is proposed. With the configuration filter operator the DCSLO will enhance the imaging accuracy of geometrical center of complex geobody. A field example of DCSLO for gravity and magnetic data in FengSunChang area in Western Sichuan is given. With the configuration filter operator determined by the seismic structures and the regressive formulas, the DCSLO imaging is consistent with the main geometrical characteristics of the seismic deep structures and overall density logging data. This verified the applicability and effectiveness of the configuration filtering in DCSLO imaging.
-
-
[1] 曾华霖. 重力场与重力勘探[M]. 北京: 地质出版社, 2005.
[2] Zeng H L. Gravity field and gravity prospecting [M]. Beijing: Geological Publishing Press, 2005.
[3] Fedi M, Pilkington M. Understanding imaging methods for potential field data[J]. Geophysics, 2012, 77(1):G13-G24.
[4] 栾文贵. 位场解析延拓的稳定化算法[J]. 地球物理学报, 1983, 26(3):263-274.
[5] Luan W G. The stablized algorithm of the analytic continuation for the potential field[J]. Acta Geophysica Sinica, 1983, 26(3):263-274.
[6] Berezkin V M. Method of the total gradient in geophysical prospecting[M]. Moscow: Nedra, 1988 (in Russian).
[7] 梁锦文. 位场向下延拓的正则化方法[J]. 地球物理学报, 1989, 32(5):600-608.
[8] Liang J W. Downward continuation of regularization methods for potential fields[J]. Acta Geophysica Sinica, 1989, 32(5):600-608.
[9] 王邦华, 王理. 重磁位场的正则化向下延拓[J]. 物探化探计算技术, 1998, 20(2):30-35.
[10] Wang B H, Wang L. A new normalized method of downward extrapolation for potential field[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1998, 20(1):30-35.
[11] Fedi M, Florio G. A stable downward continuation by using the ISVD method[J]. Geophysical Journal International, 2002, 151:146-156.
[12] Cooper G. The stable downward continuation of potential field data[J]. Exploration Geophysics, 2004, 35, 260-265.
[13] 徐世浙. 位场延拓的积分—迭代法[J]. 地球物理学报, 2006, 49(4):1176-1182.
[14] Xu S Z. The integral iteration method for continuation of potential fields[J]. Chinese Journal of Geophysics, 2006, 49(4):1176-1182.
[15] 曾小牛, 李夕海, 韩绍卿, 等. 位场向下延拓三种迭代方法之比较[J]. 地球物理学进展, 2011, 26(3):908-915.
[16] Zeng X N, Li X B, Han S Q, et al. A comparison of three iteration methods for downward continuation of potential fields[J]. Progress in Geophysics, 2011, 26(3):908-915.
[17] Zeng X N, Li X H, Su J, et al. An adaptive iterative method for downward continuation of potential-field data from a horizontal plane[J]. Gephysics, 2013, 78(4):J43-J52.
[18] 刘晓刚, 王兴涛, 李迎春, 等. 重力与磁力测量数据向下延拓中最优正则化参数确定方法研究[J]. 测绘学报, 2014, 43(9):881-887.
[19] Liu X G, Wang X T, Li Y C, et al. Optimal regularization parameter determination method in downward continuation of gravimetric and geomagnetic data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9):881-887.
[20] 李晓杰, 王真理. 正则化等效层重力向下延拓方法[J]. 地球物理学报, 2018, 61(7):3038-3036.
[21] Li X J, Wang Z L. A study on gravity field downward continuation using the regularized equivalent-layer method[J]. Chinese Journal of Geophysics, 2018, 61(7):3038-3036.
[22] Naidu P. Spectrum of the potential field due to randomly distributed sources[J]. Geophysics, 1968, 33:337-345.
[23] Pawlowski R S. Green's equivalent-layer concept in gravity band-pass filter design[J]. Geophysics, 1994, 59:69-76.
[24] Quarta T, Fedi M, Santis A. Source ambiguity from an estimation of the scaling exponent of potential field power spectra[J]. Geophys. J. Int., 2000, 140:311-323.
[25] 王纯, 张研, 文百红. 改进的重力场向下延拓计算方法[J]. 大庆石油地质与开发, 2018, 37(1):147-153.
[26] Wang C, Zhang Y, Wen B H. The improved calculating method of downward continuation for gravity potential field[J]. Petroleum Geology and Oilfield Development in Daqing, 2018, 37(1):147-153.
[27] 文百红, 杨辉, 张连群, 等. 重磁优化下延成像深部物性结构预测[C]// 中国地球科学联合学术年会 2020:6048-6051.
[28] Wen B H, Yang H, Zhang L Q. Deep physical structure prediction by gravity and magnetic optimized downward continuation imaging[C]// Collection of Chinese earth science integrated symposium: 6048-6051.
[29] 程方道, 黄国强. 重磁位场波谱理论及其应用[M]. 长沙: 中南工业大学出版社, 1987.
[30] Cheng F D, Huang G Q. Spectral theory and its application of gravity and magnetic potential fields [M]. Changsha: Publishing Press of Central South University of Technology, 1987.
[31] 文百红, 程方道. 用于划分磁异常的新方法——插值切割法[J]. 中南矿冶学院学报, 1990, 21(3):229-235.
[32] Wen B H, Cheng F D. A new interpolating cut method for identifying regional and local fields of magnetic anomaly[J]. Journal of Central South Mining and Metallurgy, 1990, 21(3):229-235.
[33] 赵文举, 赵荔, 杨战军, 等. 插值切割位场分离方法改进及其在资料处理中的应用[J]. 物探与化探, 2020, 44(4):886-893.
[34] Zhao W J, Zhao L, Yang Z J, et al. The improvement of the interpolation cutting potential field separation method and its application to data processing[J]. Geophysical and Geochemical Exploration, 2020, 44(4):886-893.
-
计量
- 文章访问数: 468
- PDF下载数: 102
- 施引文献: 0