The exploration of predicting CBM content by geophysical logging data:A case study based on slope correlation random forest method
-
摘要: 煤层气含量是煤层勘探开发研究的重点参数之一,由于煤层气含量受多因素影响,能有效预测其含量至关重要.本文将斜率关联度法与随机森林算法相结合,以地球物理测井资料为基础进行煤层气含量预测.首先利用改进的斜率关联度法,计算得到对煤层气含量敏感的测井曲线,再利用交叉验证法探究合适的随机森林决策树个数,并结合选出的超参数利用随机森林算法预测煤层气含量.以沁水煤田柿庄北区3号层为例,对该区块进行评价预测,并将预测结果与多元回归模型拟合结果进行对比,同时对本文方法模型的泛化性进行研究分析.结果表明,应用斜率关联度法对测井曲线与煤层气含量进行分析计算能准确有效地找到可用于煤层气含量预测的测井曲线;用随机森林算法训练得到的模型预测非夹矸段煤岩的煤层气含量准确,计算结果可信度高,在夹矸段预测能力较弱,总体对煤层气勘探开发有指导意义,具有实际应用价值.
-
-
计量
- 文章访问数: 1033
- PDF下载数: 53
- 施引文献: 0