中国自然资源航空物探遥感中心主办
地质出版社出版

城市地下空间探测多参数并行高密度电法系统研制

丁卫忠, 孙夫文, 李建华, 郑采君, 林品荣, 齐方帅. 2021. 城市地下空间探测多参数并行高密度电法系统研制. 物探与化探, 45(6): 1448-1454. doi: 10.11720/wtyht.2021.1531
引用本文: 丁卫忠, 孙夫文, 李建华, 郑采君, 林品荣, 齐方帅. 2021. 城市地下空间探测多参数并行高密度电法系统研制. 物探与化探, 45(6): 1448-1454. doi: 10.11720/wtyht.2021.1531
DING Wei-Zhong, SUN Fu-Wen, LI Jian-Hua, ZHENG Cai-Jun, LIN Pin-Rong, QI Fang-Shuai. 2021. Development of multi-parameter parallel measuring high-density electrical system for urban underground space exploration. Geophysical and Geochemical Exploration, 45(6): 1448-1454. doi: 10.11720/wtyht.2021.1531
Citation: DING Wei-Zhong, SUN Fu-Wen, LI Jian-Hua, ZHENG Cai-Jun, LIN Pin-Rong, QI Fang-Shuai. 2021. Development of multi-parameter parallel measuring high-density electrical system for urban underground space exploration. Geophysical and Geochemical Exploration, 45(6): 1448-1454. doi: 10.11720/wtyht.2021.1531

城市地下空间探测多参数并行高密度电法系统研制

  • 基金项目:

    国家重点研发计划项目(2018YFE0208300)

    基本科研业务费项目(AS2021Y01)

    物化探所中央财政科研项目结余资金项目(JY201901)

    基本科研业务费专项资金项目(YYWF201730)

详细信息
    作者简介: 丁卫忠(1980-),男,2003年毕业于东华理工学院,高级工程师,主要研究方向为激电法、电磁法探测技术及应用。Email:dweizhong@mail.cgs.gov.cn
  • 中图分类号: P631

Development of multi-parameter parallel measuring high-density electrical system for urban underground space exploration

  • 在总结现有高密度电法仪器优缺点的基础上,结合城市地下空间探测的需求,研制了一种多参数并行高密度电法系统。该系统具有一次供电,多电极同时接收信号、多参数同时测量的特点,相对于传统高密度电法仪,有效提高了工作效率。通过场地试验表明该仪器性能达到预期效果。文章最后总结了仪器性能特点及对高密度电法仪器发展的建议。
  • 加载中
  • [1]

    赵镨, 姜杰, 王秀荣. 城市地下空间探测关键技术及发展趋势[J]. 中国煤炭地质, 2017, 29(9):62-66,73.

    [2]

    Zhao P, Jiang J, Wang X R. Urban underground space exploration key technologies and development trend[J]. Coal Geology of China, 2017, 29(9):62-66,73.

    [3]

    严加永, 孟贵祥, 吕庆田, 等. 高密度电法的进展与展望[J]. 物探与化探, 2012, 36(4):576-584.

    [4]

    Yan J Y, Meng G X, Lyu Q T, et al. The progress and prospect of the electrical resistivity imaging survey[J]. Geophysical and Geochemical Exploration, 2012, 36(4):576-584.

    [5]

    周杨. 高密度电阻率法测深原理及应用实例[M]. 郑州: 黄河水利出版社, 2012.

    [6]

    Zhou Y. Principle and application of high density resistivity sounding [M]. Zhengzhou: The Yellow River Water Conservancy Press, 2012.

    [7]

    曹煜, 刘盛东, 唐润秋, 等. 电法并行采集AM排列推导ABM排列技术研究[J]. 物探与化探, 2016, 40(6):1157-1165.

    [8]

    Cao Y, Liu S D, Tang R Q, et al. Research on the derivation of ABM array for parallel acquisition of AM array technique[J]. Geophysical and Geochemical Exploration, 2016, 40(6):1157-1165.

    [9]

    许艺煌, 黄真萍, 程志伟, 等. 高密度电阻率法在弃渣堆积体分布调查中的应用[J]. 物探与化探, 2020, 44(2):435-440.

    [10]

    Xu Y H, Huang Z P, Cheng Z W, et al. The application of high density electrical resistivity method to the investigation of the distribution of slag accumulation in hydropower station[J]. Geophysical and Geochemical Exploration, 2020, 44(2):435-440.

    [11]

    刘道涵, 罗士新, 陈长敬. 高密度电阻率法在丹江口水源区尾矿坝监测中的应用[J]. 物探与化探, 2020, 44(1):215-219.

    [12]

    Liu D H, Luo S X, Chen C J. The application of high density resistivity method to the monitoring of tailings dam[J]. Geophysical and Geochemical Exploration, 2020, 44(1):215-219.

    [13]

    王战军. 电法在追索水库坝区地下暗河中的应用[J]. 物探与化探, 2019, 43(5):1157-1162.

    [14]

    Wang Z J. The application of electrical method to tracking underground river of reservoir dam area[J]. Geophysical and Geochemical Exploration, 2019, 43(5):1157-1162.

    [15]

    熊华山, 柏长卫, 王赐鸿. 高密度电阻率法中负电位差的产生原因及其可利用性[J]. 物探与化探, 2016, 40(1):83-87.

    [16]

    Xiong H S, Bai C W, Wang C H. The reason for the generation of negative potential difference in high-density electrical method and its utility[J]. Geophysical and Geochemical Exploration, 2016, 40(1):83-87.

    [17]

    丁卫忠, 王文国. 相位激电法在牛家营银铅锌多金属矿的找矿勘查实践[J]. 现代矿业, 2017, 573(1):14-18.

    [18]

    Ding W Z, Wang W G. Application of Phase Induced polarization method in the prospecting and exploration of Niujiaying Ag-Pb-Zn Polymetallic Deposit[J]. Modern Mining, 2017, 573(1):14-18.

    [19]

    沈鸿雁. 高密度电法勘探方法与技术[M]. 北京: 地质出版社, 2012.

    [20]

    Shen H Y. High density electrical exploration method and technology [M]. Beijing: Geological Publishing House, 2012.

    [21]

    李志武. 高密度电法仪器的发展[J]. 地质装备, 2013, 14(5):25-29.

    [22]

    Li Z W. Development of high density electrical apparatus[J]. Equipment for Geotechnical Engineering, 2013, 14(5):25-29.

    [23]

    孙夫文, 郑采君, 刘昕卓, 等. 基于FPGA串口波特率自适应功能的设计与实现[J]. 电子设计工程, 2019, 27(9):69-73.

    [24]

    Sun F W, Zheng C J, Liu X Z, et al. Design and implementation of serial port baud rate adaptive function based on FPGA[J]. Electronic Design Engineering, 2019, 27(9):69-73.

    [25]

    孙夫文, 郑采君, 刘昕卓, 等. 基于STM32同步信号传输延时校正模块设计与实现[J]. 电子设计工程, 2019, 27(16):170-174,179.

    [26]

    Sun F W, Zheng C J, Liu X Z, et al. Design and implementation of delay correction module for synchronous signal transmission based on STM32[J]. Electronic Design Engineering, 2019, 27(16):170-174,179.

    [27]

    Wang J L, Lin P R, Wang M, et al. A multiple parameter extraction and electromagnetic coupling correction technique for time domain induced polarization full waveform data[J]. Exploration Geophysics, 2019, 50(2), 113-123.

    [28]

    李建华, 林品荣, 何畏, 等. 基于全波形采样的激电多信息提取方法研究与应用[J]. 地球物理学进展, 2020, 35(1):132-138.

    [29]

    Li J H, Lin P R, He W, et al. Study and application on induced polarization multi-parameter information extraction method based on the full waveform sampling technology[J]. Progress in Geophysics, 2020, 35(1):132-138.

    [30]

    丁卫忠, 王文国, 孙诚业, 等. 激电法接收机的处理方法和系统[P]. sourceZL201710478267. 5.

    [31]

    Ding W Z, Wang W G, Sun C Y, et al. Processing method and system of IP receiver[P]. ZL201710478267. 5.

    [32]

    刘东明, 冯杰, 贾定宇, 等. 雄安新区地热及工程孔综合测井2019年度进展报告[R]. 中国地质科学院地球物理地球化学勘查研究所, 2019.

    [33]

    Liu D M, Feng J, Jia D Y, et al. 2019 annual progress report of geothermal and engineering borehole comprehensive logging in xiong'an New Area[R]. Institute of Geophysical and Geochemical Exploration,Chianese Academy of Geological Science, 2019.

  • 加载中
计量
  • 文章访问数:  761
  • PDF下载数:  119
  • 施引文献:  0
出版历程
收稿日期:  2020-11-23
修回日期:  2021-12-20
刊出日期:  2021-12-21

目录