中国自然资源航空物探遥感中心主办
地质出版社出版

半航空瞬变电磁L1范数自适应正则化反演

何可, 郭明, 胡章荣, 易国财, 王仕兴. 2021. 半航空瞬变电磁L1范数自适应正则化反演. 物探与化探, 45(5): 1338-1346. doi: 10.11720/wtyht.2021.1586
引用本文: 何可, 郭明, 胡章荣, 易国财, 王仕兴. 2021. 半航空瞬变电磁L1范数自适应正则化反演. 物探与化探, 45(5): 1338-1346. doi: 10.11720/wtyht.2021.1586
HE Ke, GUO Ming, HU Zhang-Rong, YI Guo-Cai, WANG Shi-Xing. 2021. Semi-airborne transient electromagnetic inversion based on L1-norm adaptive regularization. Geophysical and Geochemical Exploration, 45(5): 1338-1346. doi: 10.11720/wtyht.2021.1586
Citation: HE Ke, GUO Ming, HU Zhang-Rong, YI Guo-Cai, WANG Shi-Xing. 2021. Semi-airborne transient electromagnetic inversion based on L1-norm adaptive regularization. Geophysical and Geochemical Exploration, 45(5): 1338-1346. doi: 10.11720/wtyht.2021.1586

半航空瞬变电磁L1范数自适应正则化反演

  • 基金项目:

    国家自然科学基金项目

    稳定条件突破CFL限制的显式有限差分法模拟地形模型的三维半航空瞬变电磁响应(41974158)

详细信息
    作者简介: 何可(1988-),男,在读博士,从事半航空瞬变电磁法正反演研究工作。Email: hk812760098@163.com
  • 中图分类号: P631

Semi-airborne transient electromagnetic inversion based on L1-norm adaptive regularization

  • 长导线源半航空瞬变电磁正则化反演正则项通常采用L2范数,其拟合结果较光滑,不能有效刻画层界面信息。针对层状介质陡变模型实现正则项为L1范数的反演算法,采用迭代重加权最小二乘法将原问题转化为L2正则化子问题求解,解决L1范数存在不可导问题;采用OpenMP技术对雅可比矩阵并行计算,提高了反演速度;对自适应正则化因子分段迭代法的调整策略进行分析并改进,改进后的自适应正则化因子调整策略更适合半航空瞬变电磁L1正则反演算法。最后对电阻率进行反演并与Occam反演结果作比较,结果表明L1正则反演充分迭代后能够突出符合真实模型的电性界面,反演电阻率与模型真实值更接近。
  • 加载中
  • [1]

    王绪本, 张赛民, 高嵩, 等. 无人机半航空瞬变电磁探测技术及其应用[C]// 2019年中国地球科学联合学术年会, 2019.

    [2]

    Wang X B, Zhang S M, Gao S, et al. Semi-airborne transient electromagnetic detection technology and its application[C]// 2019 Chinese Joint Annual Conference on Earth Sciences, 2019.

    [3]

    张澎, 余小东, 许洋, 等. 半航空时间域电磁数据一维自适应正则化反演[J]. 物探化探计算技术, 2017, 39(1):1-8.

    [4]

    Zhang P, Yu X D, Xu Y, et al. An adaptive regularized inversion of 1D semi-airborne time-domain electromagnetic data[J]. Computing Techniques for Geophysical and Geochemical exploration, 2017, 39(1):1-8.

    [5]

    Smith R S, Peter A A, McGowan P D. A comparison of data from airborne,semi-airborne,and ground[J]. Geophysics, 2001, 66(5):1379-1385.

    [6]

    刘富波, 李巨涛, 刘丽华, 等. 无人机平台半航空瞬变电磁勘探系统及其应用[J]. 地球物理学进展, 2017, 32(5):2222-2229.

    [7]

    Liu F B, Li J T, Liu L H, et al. Development and application of a new semi-airborne transient electromagnetic system with UAV platform[J]. Progress in Geophysics, 2017, 32(5):2222-2229.

    [8]

    杨聪, 毛立峰, 毛鑫鑫, 等. 半航空瞬变电磁自适应正则化-阻尼最小二乘算法研究[J]. 地质与勘探, 2020, 56(1):137-146.

    [9]

    Yang C, Mao L F, Mao X X, et al. Study on semi-aerospace transient electromagnetic adaptive regularization-damped least squares algorithm[J]. Geology and Exploration, 2020, 56(1):137-146.

    [10]

    李锋平, 杨海燕, 邓居智, 等. TEM正演响应计算的几种频-时域转换方法对比[J]. 物探与化探, 2016, 40(4):743-749.

    [11]

    Li F P, Yang H Y, Deng J Z, et al. Comparison of several frequency-time transformation methods for TEM forward modeling[J]. Geophysical and Geochemical Exploration, 2016, 40(4):743-749.

    [12]

    王鹏飞, 王书明, 安永宁. 不规则回线瞬变电磁法一维烟圈反演研究[J]. 地球物理学进展, 2019, 34(3):1113-1120.

    [13]

    Wang P F, Wang S M, An Y N. One-dimensional smoke ring inversion of irregular loop source transient electromagnetic method[J]. Progress in Geophysics, 2019, 34(3):1113-1120.

    [14]

    李刚, 潘和平, 王智, 等. 回线源瞬变电磁法一维反演算法[J]. 煤田地质与勘探, 2017, 45(5):161-166.

    [15]

    Li G, Pan H P, Wang Z, et al. One-dimensional inversion algorithm of loop-line source transient electromagnetic method[J]. Coal Geology and Exploration, 2017, 45(5):161-166.

    [16]

    Huang H, Palacky G J. Damped leas-squares inversion of time-domain airborne em data based on singular value decomposition[J]. Geophysical Prospecting, 1991, 39(6):827-844.

    [17]

    杨云见, 何展翔, 赵晓明. 接地长导线源瞬变电磁法全区视电阻率定义探讨[J]. 物探装备, 2010, 20(2):117-120.

    [18]

    Yang Y J, He Z X, Zhao X M. Research on the defining all time apparent resistivity of the TEM method excitated with grounding long line current source[J]. Equipment for Geophysical Prospecting, 2010, 20(2):117-120.

    [19]

    唐荣江, 王绪本, 甘露. 一种利用特征值性质的MT 阻尼最小二乘反演[J]. 石油物探, 2017, 56(6):898-904.

    [20]

    Tang R J, Wang X B, Gan L. A damped least square inversion for MT utilizing eigenvalue property[J]. Geophysical Prospecting for Petroleum, 2017, 56(6):898-904.

    [21]

    Constable S C, Parker R L, Constable C G. Occam’s inversion:Apractical algorithm for generating smooth models from electromagnetic sounding data[J]. Geophysics, 1987, 52(3):289-300.

    [22]

    徐玉聪, 赵宁, 秦策, 等. 大定源瞬变电磁一维自适应正则化反演[J]. 地质与勘探, 2015, 51(2):360-365.

    [23]

    Xu Y C, Zhao N, Qin C, et al. One-dimensional adaptive regularization inversion of transient electromagnetic sounding with a large fixed source[J]. Geology and Exploration, 2015, 51(2):360-365.

    [24]

    翁爱华. Occam 反演及其在瞬变电磁测深中的应用[J]. 地质与勘探, 2007, 43(5):74-76.

    [25]

    Weng A H. Occam inversion and its application to transient electromagnetic method[J]. Geology and Exploration, 2007, 43(5):74-76.

    [26]

    毛立峰, 王绪本, 李文杰. 飞行高度同时反演的固定翼航空瞬变电磁一维反演[J]. 地球物理学报, 2011, 54(8):2136-2147.

    [27]

    Mao L F, Wang X B, Li W J. Research on 1D inversion method of fix-wing airborne transient electromagnetic record with flight altitude inversion simultaneously[J]. Chinese Journal of Geophysics, 2011, 54(8):2136-2147.

    [28]

    覃庆炎, 王绪本, 毛立峰. 导电导磁层状介质上的固定翼航空瞬变电磁响应[J]. 地球物理学进展, 2011, 26(5):1796-1801.

    [29]

    Qin Q Y, Wang X B, Mao L F. The fixed-wing airborne transient electromagnetic response of a magnetic conductive layered medium[J]. Progress in Geophysics, 2011, 26(5):1796-1801.

    [30]

    刘俊峰, 邓居智, 陈辉, 等. 一种用于Occam反演中搜索拉格朗日乘子的方法[J]. 工程地球物理学报, 2013, 10(3):344-350.

    [31]

    Liu J F, Deng J Z, Chen H, et al. A method used for searching Lagrange multiplier in Occam inversion[J]. Chinese Journal of Engineering Geophysics, 2013, 10(3):344-350.

    [32]

    陈小斌, 赵国泽, 汤吉, 等. 大地电磁自适应正则化反演算法[J]. 地球物理学报, 2005, 48(4):937-946.

    [33]

    Chen X B, Zhao G Z, Tang J, et al. An adaptive regularized inversion algorithm for magnetotelluric data[J]. Chinese Journal of Geophysics, 2005, 48(4):937-946.

    [34]

    Gholami A, Gheymasi H M. Regularization of geophysical ill-posed problems by iteratively re-weighted and refined least squares[J]. Computational Geosciences, 2016(20):19-33.

    [35]

    Vatankhah S, Renaut R A, Ardestani V E. 3-D Projected L1 inversion of gravity data using truncated unbiased predictive risk estimator for regularization parameter estimation[J]. Geophysical Journal International, 2017, 210(3):1872-1887.

    [36]

    苏扬, 殷长春, 刘云鹤, 等. 基于广义模型约束的时间域航空电磁反演研究[J]. 地球物理学报, 2019, 62(2):743-751.

    [37]

    Su Y, Yin C C, Liu Y H, et al. Inversions of time-domain airborne EM based on generalized model constraints[J]. Chinese Journal of Geophysics, 2019, 62(2):743-751.

    [38]

    阮帅, 汤吉, 陈小斌, 等. 三维大地电磁自适应L1范数正则化反演[J]. 地球物理学报, 2020, 63(10):3896-3911.

    [39]

    Ruan S, Tang J, Chen X B, et al. Three-dimensional magnetotelluric inversion base on adaptive L1-norm Regularization[J]. Chinese J. Geophys., 2020, 63(10):3896-3911.

    [40]

    Last B J, Kubik K. Compact gravity inversion[J]. Geophysics, 1983, 48(6):713-721.

    [41]

    Portniaguine O, Zhdanov M S. Focusing geophysical inversion images[J]. Geophysics, 1999, 64(3):874-887.

    [42]

    Zhdanov , Ellis M S, Mukherjee R, et al. Three-dimensional regularized focusing inversion of gravity gradient tensor component data[J]. Geophysics, 2004, 69(4):925-937.

    [43]

    Zhang L L, Yu P, Wang J L, et al. A study on 2D magnetotelluric sharp boundary inversion[J]. Chinese Journal of Geophysics, 2010, 53(3):631-637.doi: 10.3969/j.issn.0001-5733.2010.03.017.

    [44]

    陈闫, 李桐林, 范翠松, 等. 重力梯度全张量数据三维共轭梯度聚焦反演[J]. 地球物理学进展, 2014, 29(3):1133-1142.

    [45]

    Chen Y, Li T L, Fan C S, et al. The 3D focusing inversion of full tensor gravity gradient data based on conjugate gradient[J]. Progress in Geophysics, 2014, 29(3):1133-1142.

    [46]

    秦朋波, 黄大年. 重力和重力梯度数据联合聚焦反演方法[J]. 地球物理学报, 2016, 59(6):2203-2224.

    [47]

    Qin P B, Huang D N. Integrated gravity and gravity gradient data focusing inversion[J]. Chinese Journal of Geophysics, 2016, 59(6):2203-2224.

    [48]

    米萨克;纳比吉安. 应用地球物理学中的电磁方法[M].赵经祥,王彦军,译. 北京: 地质出版社, 1992:226-231.

    [49]

    Misac N Nabighian. Electromagnetic methods in applied geophysics [M]. Translated by Zhao Jingxiang,Wang Yanjun. Beijing: Geological Publishing House, 1992:226-231.

    [50]

    Knight J H, Raich A P. Transient electromagnetic calculations using the Gaver-Stehfest inverse Laplace transform method[J]. Geophysics, 1982, 47(1):47-50.

    [51]

    张伟, 王绪本, 覃庆炎. 汉克尔变换的数值计算与精度的对比[J]. 物探与化探, 2010, 34(6):753-755.

    [52]

    Zhang W, Wang X B, Qin Q Y. Research and application on numberical integration of Hankel Transforms by digital filtering[J]. Geophysical and Geochemical Exploration, 2010, 34(6):753-755.

    [53]

    朴化荣, 殷长春. 利用G-S逆拉氏变换法计算瞬变测深正演问题[J]. 物探化探计算技术, 1987, 9(4):295-302.

    [54]

    Piao H R, Yin C C. Calculation of transient E.M sounding using the Gaver-Stehfest inverse Laplace transform method[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1987, 9(4):295-302.

    [55]

    罗延钟, 昌彦君. G-S变换的快速算法[J]. 地球物理学报, 2000, 43(5):684-690.

    [56]

    Luo Y Z, Chang Y J. A rapid algorithm for G-S transform[J]. Chinese Journal of Geophysics, 2000, 43(5):684-690.

    [57]

    邓琰, 汤吉, 阮帅. 三维大地电磁自适应正则化有限内存拟牛顿反演[J]. 地球物理学报, 2019, 62(9):3601-3614.

    [58]

    Deng Y, Tang J, Ruan S. Adaptive regularized three-dimensional magnetotelluric inversion based on the LBFGS quasi-Newton method[J]. Chinese Journal of Geophysics, 2019, 62(9):3601-3614.

    [59]

    吴小平, 徐果明. 大地电磁数据的Occam反演改进[J]. 地球物理学报, 1998, 41(4):547-554.

    [60]

    Wu X P, Xu G M. Improvement of Occam’s inversion for MT data[J]. Chinese Journal of Geophysics, 1998, 41(4):547-554.

    [61]

    徐凤洲, 张健飞. 基于OpenMP的近场动力学模拟并行实现[J]. 河南理工大学学报:自然科学版, 2020, 39(5):130-138.

    [62]

    Xu F Z, Zhang J F. Parallel implementation of peridynamic simulation based on OpenMP[J]. Journal of Henan Polytechnic University:Natural Science, 2020, 39(5):130-138.

  • 加载中
计量
  • 文章访问数:  545
  • PDF下载数:  52
  • 施引文献:  0
出版历程
收稿日期:  2020-12-28
修回日期:  2021-10-20
刊出日期:  2021-12-15

目录