中国自然资源航空物探遥感中心主办
地质出版社出版

基于Sentinel-2A的孙吴地区土壤有机质反演研究

陈超群, 戴慧敏, 冯雨林, 杨泽, 杨佳佳. 2022. 基于Sentinel-2A的孙吴地区土壤有机质反演研究. 物探与化探, 46(5): 1141-1148. doi: 10.11720/wtyht.2022.0038
引用本文: 陈超群, 戴慧敏, 冯雨林, 杨泽, 杨佳佳. 2022. 基于Sentinel-2A的孙吴地区土壤有机质反演研究. 物探与化探, 46(5): 1141-1148. doi: 10.11720/wtyht.2022.0038
CHEN Chao-Qun, DAI Hui-Min, FENG Yu-Lin, YANG Ze, YANG Jia-Jia. 2022. Sentinel-2A based inversion of the organic matter content of soil in the Sunwu area. Geophysical and Geochemical Exploration, 46(5): 1141-1148. doi: 10.11720/wtyht.2022.0038
Citation: CHEN Chao-Qun, DAI Hui-Min, FENG Yu-Lin, YANG Ze, YANG Jia-Jia. 2022. Sentinel-2A based inversion of the organic matter content of soil in the Sunwu area. Geophysical and Geochemical Exploration, 46(5): 1141-1148. doi: 10.11720/wtyht.2022.0038

基于Sentinel-2A的孙吴地区土壤有机质反演研究

  • 基金项目:

    中国地质调查局项目“东北黑土地1:25万土地质量地球化学调查”(121201007000161312)

    “兴凯湖平原及松辽平原西部土地质量地球化学调查”(DD20190520)

详细信息
    作者简介: 陈超群(1996-),女,硕士研究生,主要研究方向为生态环境遥感与地理信息系统。Email:522110156@qq.com
  • 中图分类号: P632

Sentinel-2A based inversion of the organic matter content of soil in the Sunwu area

  • 利用Sentinel-2A多光谱遥感影像,结合实测土壤信息,对黑龙江省孙吴县黑土区土壤有机质含量进行反演研究。对影像进行预处理后,通过相关分析和随机森林(RF)选取特征波段,采用偏最小二乘法和BP神经网络构建土壤有机质含量多光谱模型反演红旗林场土壤有机质含量。研究表明:相关性选取的倒数对数一阶微分反射率波段和RF选择的组合波段能够有效提高土壤反演精度,组合波段的RF-BP神经网络模型反演效果最佳,R2=0.724 5,RMSE=1.312 7%。本次研究可为实现土壤有机质动态监测提供技术支持和参考。
  • 加载中
  • [1]

    孔牧, 杨少平. 森林沼泽景观区有机质对元素表生地球化学特征的影响机制[J]. 物探与化探, 2008, 32(1):31-32,74.

    [2]

    Kong M, Yang S P. Preliminary research into the disturbed principle of organic material to character of supergene-geochemistry in forest marsh landscape andscape area[J]. Geophysical and Geochemical Exploration, 2008, 32(1):31-32,74.

    [3]

    Rasmussen C, Heckman K, Wieder W R, et al. Beyond clay:Towards an improved set of variables for predicting soil organic matter content[J]. Biogeochemistry, 2018, 137(5):297-306.

    [4]

    戴慧敏, 刘凯, 宋运红, 等. 东北地区黑土退化地球化学指示与退化强度[J]. 地质与资源, 2020, 29(6):510-517.DOI:10.13686/j.cnki.dzyzy.2020.06.002.

    [5]

    Dai H M, Liu K, Song Y H, et al. Black soil degradation and intensity in northeast China: Geochemical indication[J]. Geology and Resources, 2020, 29(6):510-517.DOI:10.13686/j.cnki.dzyzy.2020.06.002.

    [6]

    刘焕军, 张美薇, 杨昊轩, 等. 多光谱遥感结合随机森林算法反演耕作土壤有机质含量[J]. 农业工程学报, 2020, 36(10):134-140.

    [7]

    Liu H J, Zhang M W, Yang H X, et al. Invertion of cultivated soil organic matter content combining multi-spectral remote sensing and random forest algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(10):134-140.

    [8]

    屈冉, 张雅琼, 聂忆黄, 等. 基于多光谱遥感影像的富川县表层土壤有机质含量反演[J]. 环境与可持续发展, 2019, 44(1):154-157.

    [9]

    Qu R, Zhang Y Q, Nie Y H, et al. Inversion of surface soil organic matter content in Fuchuan county based on multi spectral remote sensing image[J]. Environment and Sustainable Development, 2019, 44(1):154-157.

    [10]

    陈德宝, 陈桂芬. 基于Landsat8遥感图像的黑土区土壤有机质含量反演研究[J]. 中国农机化学报, 2020, 41(6):194-198.

    [11]

    Chen D B, Chen G F. Inversion of soil organic matter content in black soil region based on landsat8 remote sensing image[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(6):194-198.

    [12]

    陈思明, 邹双全, 毛艳玲, 等. 土壤光谱重建的湿地土壤有机质含量多光谱反演[J]. 光谱学与光谱分析, 2018, 38(3):912-917.

    [13]

    Chen S M, Zou S Q, Mao Y L, et al. Inversion of soil organic matter content in wetland using multispectral data based on soil spectral reconstruction[J]. Spectroscopy and Spectral Analysis, 2018, 38(3):912-917.

    [14]

    Dhawale N M, Adamchuk V I, Prasher S O, et al. Proximal soil sensing of soil texture and organic matter with a prototype portable mid-infrared spectrometer[J]. European Journal of Soil Science, 2015, 66(4): 661-669.

    [15]

    马驰. 基于Sentinel-2A遥感影像土壤有机质含量的反演研究[J]. 北方园艺, 2020(2):94-100.

    [16]

    Ma C. Inversion of soil organic matter content based on sentinel-2A remote sensing image[J]. Northern Horticulture, 2020(2):94-100.

    [17]

    刘鹏. 孙吴县耕地质量评价[D]. 哈尔滨: 东北农业大学, 2020.

    [18]

    Liu P. Evaluation of cultivated land quality in Sunwu County[D]. Harbin: Northeast Agricultural University, 2020.

    [19]

    李丹丹. 黑河市耕地地力评价与土壤改良对策研究[D]. 哈尔滨: 东北农业大学, 2018.

    [20]

    Li D D. Investigation and evaluation on cultivated land fertility of Heihe City[D]. Harbin: Northeast Agricultural University, 2018.

    [21]

    Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.

    [22]

    彭刘亚, 解惠婷, 冯伟栋. 基于随机森林算法的砂土液化预测方法[J]. 物探与化探, 2020, 44(6):1429-1434.

    [23]

    Peng L Y, Xie H T, Feng W D. The method of predict sand liquefaction based on random forest algorithm[J]. Geophysical and Geochemical Exploration, 2020, 44(6):1429-1434.

    [24]

    王琨, 肖克炎, 丛源. 对数比变换和偏最小二乘法在地球化学组合异常提取中的应用——以湘西北铅锌矿为例[J]. 物探与化探, 2015, 39(1):141-148.

    [25]

    Wang K, Xiao K Y, Cong Y. Log-ratio transformation and PLS methods for identifying integrated geochemical anomalies: A case study of lead-zinc mineralization in northwestern Hunan[J]. Geophysical and Geochemical Exploration, 2015, 39(1):141-148.

    [26]

    陈昊宇, 杨光, 韩雪莹, 等. 基于连续小波变换的土壤有机质含量高光谱反演[J]. 中国农业科技导报, 2021, 23(5):132-142.DOI:10.13304/j.nykjdb.2020.0742.

    [27]

    Chen H Y, Yang G, Han X Y, et al. Hyperspectral inversion of soil organic matter content based on continuous wavelet transform journal of agricultural science and technology[J]. Journal of Agricultural Science and Technology, 2021, 23(5):132-142.DOI:10.13304/j.nykjdb.2020.0742.

    [28]

    叶勤, 姜雪芹, 李西灿, 等. 基于高光谱数据的土壤有机质含量反演模型比较[J]. 农业机械学报, 2017, 48(3):164-172.

    [29]

    Ye Q, Jiang X Q, Li X C, et al. Comparison on inversion model of soil organic matter content based on hyperspectral data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3):164-172.

    [30]

    王启元, 赵艳玲, 房铄东, 等. 基于多光谱遥感的裸土土壤含水量反演研究[J]. 矿业科学学报, 2020, 5(6):608-615.

    [31]

    Wang Q Y, Zhao Y L, Fang S D, et al. Inversion of soil moisture in bare soil based on multi-spectral remote sensing[J]. Journal of Mining Science and Technology, 2020, 5(6): 608-615.

    [32]

    汤超. 淮北矿区有机质含量反演[J]. 农业与技术, 2021, 41(13):123-128.DOI:10.19754/j.nyyjs.20210715035.

    [33]

    Tang C. Inversion of organic matter content in Huaibei mining area[J]. Agriculture and Technology, 2021, 41(13):123-128.DOI:10.19754/j.nyyjs.20210715035.

    [34]

    谢树刚. 基于高光谱的黄河三角洲土壤有机质含量估测模型研究[D]. 泰安: 山东农业大学, 2021.DOI:10.27277/d.cnki.gsdnu.2021.000631.

    [35]

    Xie S G. Research on estimation model of soil organic matter content in Yellow River Delta based on hyperspectral[D]. Tai’an: Shandong Agricultural University, 2021.DOI: 10.27277/d.cnki.gsdnu.2021.000631.

    [36]

    陶培峰, 王建华, 李志忠, 等. 基于高光谱的土壤养分含量反演模型研究[J]. 地质与资源, 2020, 29(1):68-75,84.DOI:10.13686/j.cnki.dzyzy.2020.01.006.

    [37]

    Tao P F, Wang J H, Li Z Z, et al. Research of soil nutrient content inversion model based on hyperspectral data[J]. Geology and Resources, 2020, 29(1):68-75,84.DOI:10.13686/j.cnki.dzyzy.2020.01.006.

  • 加载中
计量
  • 文章访问数:  471
  • PDF下载数:  65
  • 施引文献:  0
出版历程
收稿日期:  2022-01-25
修回日期:  2022-10-20
刊出日期:  2023-01-03

目录