中国自然资源航空物探遥感中心主办
地质出版社出版

基于模拟退火法的磁共振测深多源谐波噪声压制方法

陈亮, 付立恒, 蔡冻, 李凡, 李振宇, 鲁恺. 2022. 基于模拟退火法的磁共振测深多源谐波噪声压制方法. 物探与化探, 46(1): 141-149. doi: 10.11720/wtyht.2022.1158
引用本文: 陈亮, 付立恒, 蔡冻, 李凡, 李振宇, 鲁恺. 2022. 基于模拟退火法的磁共振测深多源谐波噪声压制方法. 物探与化探, 46(1): 141-149. doi: 10.11720/wtyht.2022.1158
CHEN Liang, FU Li-Heng, CAI Dong, LI Fan, LI Zhen-Yu, LU Kai. 2022. Suppression method of multi-source harmonic noise in magnetic resonance sounding based on simulated annealing method. Geophysical and Geochemical Exploration, 46(1): 141-149. doi: 10.11720/wtyht.2022.1158
Citation: CHEN Liang, FU Li-Heng, CAI Dong, LI Fan, LI Zhen-Yu, LU Kai. 2022. Suppression method of multi-source harmonic noise in magnetic resonance sounding based on simulated annealing method. Geophysical and Geochemical Exploration, 46(1): 141-149. doi: 10.11720/wtyht.2022.1158

基于模拟退火法的磁共振测深多源谐波噪声压制方法

  • 基金项目:

    国家重点基础研究发展计划(973计划)项目(2011CB710606)

详细信息
    作者简介: 陈亮(1994-),男,助理工程师,硕士,主要从事电磁法勘探数据处理及应用研究工作。Email: chenliang1994@cug.edu.cn
  • 中图分类号: P631

Suppression method of multi-source harmonic noise in magnetic resonance sounding based on simulated annealing method

  • 磁共振测深找水方法在高电磁噪声环境下应用时,往往会因为电磁噪声的干扰导致实测数据信噪比降低,反演结果难以准确地确定实际地下水体的分布状况,降低方法的应用效果。针对磁共振测深找水方法在实际野外数据采集工作中常面临的多源谐波噪声干扰问题,在模型去噪的基础上推导出网格搜索同步删除法,进一步提出了效率更高的模拟退火同步删除法。仿真结果表明,2种方法均能有效压制多源谐波噪声,而模拟退火同步删除法能够更快速地搜索谐波基频值,相较网格搜索同步删除法在双基频谐波情况下工作效率提高2.35倍,大大降低了去噪流程的时间成本,且对多源谐波噪声也能取得较好的去噪效果。将该去噪算法应用于实例中,反演结果和钻孔资料的对比表明,模拟退火同步删除法可以有效压制磁共振测深方法实测数据中的多源谐波噪声,显著提高磁共振测深方法的应用效果。
  • 加载中
  • [1]

    Behroozmand A A, Keating K, Auken E. A review of the principles and applications of the nmr technique for near-surface characterization[J]. Surveys in Geophysics, 2014,36(1):27-85.

    [2]

    Lu K, Li Z Y, Niu R Q, et al. Using surface nuclear magnetic resonance and spontaneous potential to investigate the source of water seepage in the Jindeng Temple grottoes, China[J]. Journal of Cultural Heritage, 2020,45(1):42-51.

    [3]

    任志平, 李貅, 戚志鹏, 等. 地面核磁共振三维响应影响因素[J]. 物探与化探, 2017,41(1):92-97.

    [4]

    Ren Z P, Li X, Qi Z P, et al. An analysis of factors affecting SNMR 3D response[J]. Geophysical and Geochemical Exploration, 2017,41(1):92-97.

    [5]

    Pan J W, Li Z Y, Zhang Y F, et al. Correlating intensity of pulse moment with exploration depth in surface NMR[J]. Journal of Applied Geophysics, 2017,142:1-13.

    [6]

    Müller-Petke M, Braun M, Hertrich M, et al. MRSmatlab—A software tool for processing, modeling, and inversion of magnetic resonance sounding data[J]. Geophysics, 2016,81(4):9-21.

    [7]

    谢梦莹, 张文波, 汤克轩, 等. 离子浓度对冻土核磁共振响应信号的影响分析及研究[J]. 物探与化探, 2017,41(6):1262-1267.

    [8]

    Xie M Y, Zhang W B, Tang K X, et al. An analysis and study of the influence of ion concentration on nuclear magnetic resonance response signal of frozen soil[J]. Geophysical and Geochemical Exploration, 2017,41(6):1262-1267.

    [9]

    Larsen J J. Model-based subtraction of spikes from surface nuclear magnetic resonance data[J]. Geophysics, 2016,81(4):1-8.

    [10]

    万玲, 张扬, 林君, 等. 基于能量运算的磁共振信号尖峰噪声抑制方法[J]. 地球物理学报, 2016,59(6):2290-2301.

    [11]

    Wan L, Zhang Y, Lin J, et al. Spikes removal of magnetic resonance sounding data based on energy calculation[J]. Chinese J. Geophys., 2016,59(6):2290-2301.

    [12]

    Lin T T, Zhang Y, Yi X F, et al. Time-frequency peak filtering for random noise attenuation of magnetic resonance sounding signal[J]. Geophysical Journal International, 2018,213(2):727-738.

    [13]

    Li F, Li K T, Lu K, et al. Random noise suppression and parameter estimation for Magnetic Resonance Sounding signal based on maximum likelihood estimation[J]. Journal of Applied Geophysics, 2020,176:1-12.

    [14]

    田宝凤, 朱慧, 易晓峰, 等. 基于谐波建模和自相关的磁共振信号消噪与提取方法研究[J]. 地球物理学报, 2018,61(2):767-780.

    [15]

    Tian B F, Zhu H, Yi X F, et al. Denoising and extraction method of magnetic resonance sounding signal based on adaptive harmonic modeling and autocorrlation[J]. Chinese J. Geophys., 2018,61(2):767-780.

    [16]

    Legchenko A, Valla P. Removal of power-line harmonics from proton magnetic resonance measurements[J]. Journal of Applied Geophysics, 2003,53(2):103-120.

    [17]

    Dalgaard E, Auken E, Larsen J J. Adaptive noise cancelling of multichannel magnetic resonance sounding signals[J]. Geophysical Journal International, 2012,191(1):88-100.

    [18]

    Larsen J J, Dalgaard E, Auken E. Noise cancelling of MRS signals combining model-based removal of powerline harmonics and multichannel Wiener filtering[J]. Geophysical Journal International, 2013,196(2):828-836.

    [19]

    Li F, Li K T, Lu K, et al. Cancellation of varying harmonic noise in magnetic resonance sounding signals[J]. Journal of Applied Geophysics, 2020,177:1-13.

    [20]

    Kremer T, Juul Larsen J, Nguyen F. Processing harmonic EM noise with multiple or unstable frequency content in surface NMR surveys[J]. Geophysical Journal International, 2019,219(2):753-775.

    [21]

    田宝凤, 周媛媛, 王悦, 等. 基于独立主成分分析的全波核磁共振信号噪声滤除方法研究[J]. 物理学报, 2015,64(22):1-12.

    [22]

    Tian B F, Zhou Y Y, Wang Y, et al. Noise cancellation method for full-wave magnetic resonance sounding signal based on independent component analysis[J]. Acta Physica Sinica, 2015,64(22):1-12.

    [23]

    Kirkpatrick S, Gelatt C D, Vecchi, et al. Optimization by Simulated Annealing[J]. Science, 1983,220:671-680.

    [24]

    Menke W. Geophysical data analysis: Discrete inverse theory[M]. Amsterdam: Elsevier, 2012: 181-184.

    [25]

    周竹生, 谢金伟. 基于模拟退火法的弯曲射线追踪[J]. 物探与化探, 2011,35(6):793-797.

    [26]

    Zhou Z S, Xie J W. Bending ray-tracing based on simulated annealing method[J]. Geophysical and Geochemical Exploration, 2011,35(6):793-797.

    [27]

    陈亮, 李凡, 鲁恺, 等. 全相位模型估计方法压制磁共振测深谐波噪声应用研究[J]. 地质科技通报, 2020,39(4):181-188.

    [28]

    Chen L, Li F, Lu K, et al. Application of all-phase model estimation method for suppressing magnetic resonance sounding harmonic noise[J]. Bulletin of Gological Science and Technology, 2020,39(4):181-188.

  • 加载中
计量
  • 文章访问数:  934
  • PDF下载数:  83
  • 施引文献:  0
出版历程
收稿日期:  2021-03-23
修回日期:  2022-02-20
刊出日期:  2022-02-25

目录