A comparative study of Mur second-order absorbing boundary condition and unsplit recursive convolutional perfectly matched layer method under multi-source concurrency
-
摘要: 多个激励源无延时发射(多源并发)相同中心频率脉冲会形成平面波束信号,增强数据记录质量。本文通过数值模拟对比分析在多源并发情况下,非分裂递归卷积完全匹配层作为吸收边界条件和Mur二阶吸收边界条件对电磁波的吸收效果。其研究结果表明,传统的Mur二阶吸收边界条件对多源并发、多角度掠射情况下电磁波的吸收效果不佳,在大偏移距下会造成波形畸变和形成虚假反射。而在多源并发情况下采用非分裂递归卷积完全匹配层作为吸收边界条件,将坐标伸缩因子引进时域有限差分算法中。通过傅里叶逆变换将频率域坐标伸缩变换PML方程转换到时域,对电场和磁场值在离散状态下进行递归卷积运算求解。从而避免了直接对卷积进行数值求解的复杂计算,在保证计算准确性的同时,节约了内存空间,提高了计算效率。在不分裂波场情况下,改善了网格截断位置对电磁波的吸收效果。Abstract: Plane beam signals form when multiple excitation sources simultaneously emit pulses with the same center frequency (multiple-source concurrency),thus enhancing the quality of data records.This paper compares and analyzes the electromagnetic wave absorption effects of unsplit recursive convolutional perfectly matched layer (PML) as the absorbing boundary condition and Mur second-order absorbing boundary condition under multi-source concurrency through numerical simulation.According to study results,the traditional Mur second-order absorbing boundary condition did not perform well in absorbing electromagnetic waves under the conditions of multi-source concurrency and multi-angle grazing,and it will cause waveform distortion and spurious reflections in the case of large offsets.For the unsplit recursive convolutional perfectly matched layer as the absorbing boundary condition under multi-source concurrency,coordinate scale factors were introduced into the finite-difference time-domain (FDTD) algorithm.Then,the PML equation for coordinate stretching was transformed from frequency domain into time domain through the inverse Fourier transform.Finally,the electric and magnetic field values were solved using the recursive convolution method in the discrete state,thus avoiding the complicated calculation involved in directly determining the numerical solution of convolution.This allows less memory space and high calculation efficiency while ensuring accuracy.Therefore,the unsplit recursive convolutional perfectly matched layer method improves the electromagnetic wave absorption effect at the positions where the grid terminate without inducing wave-field splitting.
-
-
[1] Bayliss A, Turkel E. Radiation boundary conditions for wave-like equations[J]. Communications on Pure and Applied Mathematics, 1980, 33(6):707-725.
[2] Engquist B, Majda A. Absorbing boundary conditions for numerical simulation of waves[J]. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(5):1765-1766.
[3] Mur G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations[J]. IEEE Transactions on Electromagnetic Compatibility, 1981, 23(4):377-382.
[4] Berenger J P. Three-dimensional perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1996, 127(2):363-379.
[5] Chen Y H, Weng C C, Oristagilo M L. Application of perfectly matched layers to the transient modeling of subsurface EM problems[J]. Geophysics, 1997, 97(6):1730-1736.
[6] Festa G. Interaction between surface waves and absorbing boundaries for wave propagation in geological basins:2D numerical simulations[J]. Geophysical Research Letters, 2005, 32:L20306.
[7] Qin Z, Lu M, Zheng X, et al. The implementation of an improved NPML absorbing boundary condition in elastic wave modeling[J]. Applied Geophysics, 2009, 6(2):113-121.
[8] Higdon R L. Absorbing boundary conditions for elastic waves[J]. Siam Journal on Numerical Analysis, 2012, 31(2):64-100.
[9] Liao Z P, Wong H L, Yang B P, et al. A transmitting boundary for transient wave analysis[J]. Science in China Series A-Mathematics Physics Astronomy & Technological Science, 1984, 27(10):1063-1076.
[10] Marfurt K J. Accuracy of finite difference and finite element modeling of the scalar and elastic wave equation[J]. Geophysics, 1984, 49(4):533-549.
[11] 丁科. PML吸收边界条件影响因素分析[J]. 物探与化探, 2012, 36(4):623-627.
[12] Ding K. Analysis of influencing factors of PML absorption boundary conditions[J]. Geophysical and Geochemical Exploration, 2012, 36(4):623-627.
[13] Sacks S Z, Kingsland M D, Lee R, et al. A perfectly matched anisotropic absorber for use as an absorbing boundary condition[J]. IEEE Transactions on Antennas & Propagation, 1995, 43(12):1460-1463.
[14] Gedney D S. An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices[J]. IEEE Transactions on Antennas & Propagation, 2002, 44(12):1630-1639.
[15] 肖明顺, 昌彦君, 曹中林, 等. 探地雷达数值模拟的吸收边界条件研究[J]. 工程地球物理学报, 2008, 5(3):315-320.
[16] Xiao M S, Chang Y J, Cao Z L, et al. Study on absorption boundary conditions for numerical simulation of ground penetrating radar[J]. Journal of Engineering Geophysics, 2008, 5(3):315-320.
[17] 詹应林, 昌彦君, 曹中林. 基于UPML吸收边界的探地雷达数值模拟研究[J]. 资源环境与工程, 2008, 22(2):235-238.
[18] Zhan Y L, Chang Y J, Cao Z L. Numerical simulation of ground penetrating radar based on UPML absorption boundary[J]. Resources Environment and Engineering, 2008, 22(2):235-238.
[19] 冯德山, 谢源. 基于单轴各向异性完全匹配层边界条件的ADI-FDTD三维GPR全波场正演[J]. 中南大学学报:自然科学版, 2011, 42(8):202-210.
[20] Feng D S, Xie Y. Full Wave field forward modeling of 3D GPR based on boundary conditions of uniaxial anisotropic completely matched layer[J]. Journal of Central South University:Science and Technology, 2011, 42(8):202-210.
[21] 冯德山, 陈承申, 戴前伟. 基于UPML边界条件的交替方向隐式有限差分法GPR全波场数值模拟[J]. 地球物理学报, 2010, 53(10):2484-2496.
[22] Feng D S, Chen C S, Dai Q W. Numerical simulation of GPR full wave field with alternate direction implicit finite difference method based on UPML boundary condition[J]. Chinese Journal of Geophysics, 2010, 53(10):2484-2496.
[23] 冯德山, 王向宇. 基于卷积完全匹配层的旋转交错网格高阶差分法模拟弹性波传播[J]. 物探与化探, 2018, 42(4):766-776.
[24] Feng D S, Wang X Y. Elastic wave propagation simulation in anisotropic media and random media using heig-order difference method of rotation staggered grids based on convolutional perfectly matched layer[J]. Geophysical and Geochemical Exploration, 2018, 42(4):766-776.
[25] 李静, 曾昭发, 吴丰收, 等. 探地雷达三维高阶时域有限差分法模拟研究[J]. 地球物理学报, 2010, 53(4):974-981.
[26] LI J, Zeng Z F, Wu F S, et al. Study of three dimension high-order FDTD simulation for GPR[J]. Chinese Journal of Geophysics, 2010, 53(4):974-981.
[27] Chew W C, Weedon W H. A 3D perfectly matched medium from modified maxwell’s equations with stretched coordinates[J]. Microwave & Optical Technology Letters, 2010, 7(13):599-604.
[28] Kuzuoglu M, Mittra R. Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers[J]. IEEE Microwave & Guided Wave Lett, 1996, 6(12):447-449.
-
计量
- 文章访问数: 707
- PDF下载数: 104
- 施引文献: 0