中国自然资源航空物探遥感中心主办
地质出版社出版

多源并发下Mur二阶吸收边界和非分裂递归卷积完全匹配层对比研究

崔凡, 陈毅, 薛晗鹏, 彭苏萍, 杜云飞. 2022. 多源并发下Mur二阶吸收边界和非分裂递归卷积完全匹配层对比研究. 物探与化探, 46(3): 693-703. doi: 10.11720/wtyht.2022.1180
引用本文: 崔凡, 陈毅, 薛晗鹏, 彭苏萍, 杜云飞. 2022. 多源并发下Mur二阶吸收边界和非分裂递归卷积完全匹配层对比研究. 物探与化探, 46(3): 693-703. doi: 10.11720/wtyht.2022.1180
CUI Fan, CHEN Yi, XUE Han-Peng, PENG Su-Ping, DU Yun-Fei. 2022. A comparative study of Mur second-order absorbing boundary condition and unsplit recursive convolutional perfectly matched layer method under multi-source concurrency. Geophysical and Geochemical Exploration, 46(3): 693-703. doi: 10.11720/wtyht.2022.1180
Citation: CUI Fan, CHEN Yi, XUE Han-Peng, PENG Su-Ping, DU Yun-Fei. 2022. A comparative study of Mur second-order absorbing boundary condition and unsplit recursive convolutional perfectly matched layer method under multi-source concurrency. Geophysical and Geochemical Exploration, 46(3): 693-703. doi: 10.11720/wtyht.2022.1180

多源并发下Mur二阶吸收边界和非分裂递归卷积完全匹配层对比研究

  • 基金项目:

    国家自然科学基金项目(52074306)

    国家能源投资集团科技创新项目(GJNY2030XDXM-19-03.2)

    陕煤化集团重大项目(2018SMHKJ-A-J-03)

详细信息
    作者简介: 崔凡(1984-),男,汉族,安徽淮南人,博士,副教授,从事探地雷达理论与方法研究工作。Email:cuifan_cumtb@126.com
  • 中图分类号: P631.4

A comparative study of Mur second-order absorbing boundary condition and unsplit recursive convolutional perfectly matched layer method under multi-source concurrency

  • 多个激励源无延时发射(多源并发)相同中心频率脉冲会形成平面波束信号,增强数据记录质量。本文通过数值模拟对比分析在多源并发情况下,非分裂递归卷积完全匹配层作为吸收边界条件和Mur二阶吸收边界条件对电磁波的吸收效果。其研究结果表明,传统的Mur二阶吸收边界条件对多源并发、多角度掠射情况下电磁波的吸收效果不佳,在大偏移距下会造成波形畸变和形成虚假反射。而在多源并发情况下采用非分裂递归卷积完全匹配层作为吸收边界条件,将坐标伸缩因子引进时域有限差分算法中。通过傅里叶逆变换将频率域坐标伸缩变换PML方程转换到时域,对电场和磁场值在离散状态下进行递归卷积运算求解。从而避免了直接对卷积进行数值求解的复杂计算,在保证计算准确性的同时,节约了内存空间,提高了计算效率。在不分裂波场情况下,改善了网格截断位置对电磁波的吸收效果。
  • 加载中
  • [1]

    Bayliss A, Turkel E. Radiation boundary conditions for wave-like equations[J]. Communications on Pure and Applied Mathematics, 1980, 33(6):707-725.

    [2]

    Engquist B, Majda A. Absorbing boundary conditions for numerical simulation of waves[J]. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(5):1765-1766.

    [3]

    Mur G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations[J]. IEEE Transactions on Electromagnetic Compatibility, 1981, 23(4):377-382.

    [4]

    Berenger J P. Three-dimensional perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1996, 127(2):363-379.

    [5]

    Chen Y H, Weng C C, Oristagilo M L. Application of perfectly matched layers to the transient modeling of subsurface EM problems[J]. Geophysics, 1997, 97(6):1730-1736.

    [6]

    Festa G. Interaction between surface waves and absorbing boundaries for wave propagation in geological basins:2D numerical simulations[J]. Geophysical Research Letters, 2005, 32:L20306.

    [7]

    Qin Z, Lu M, Zheng X, et al. The implementation of an improved NPML absorbing boundary condition in elastic wave modeling[J]. Applied Geophysics, 2009, 6(2):113-121.

    [8]

    Higdon R L. Absorbing boundary conditions for elastic waves[J]. Siam Journal on Numerical Analysis, 2012, 31(2):64-100.

    [9]

    Liao Z P, Wong H L, Yang B P, et al. A transmitting boundary for transient wave analysis[J]. Science in China Series A-Mathematics Physics Astronomy & Technological Science, 1984, 27(10):1063-1076.

    [10]

    Marfurt K J. Accuracy of finite difference and finite element modeling of the scalar and elastic wave equation[J]. Geophysics, 1984, 49(4):533-549.

    [11]

    丁科. PML吸收边界条件影响因素分析[J]. 物探与化探, 2012, 36(4):623-627.

    [12]

    Ding K. Analysis of influencing factors of PML absorption boundary conditions[J]. Geophysical and Geochemical Exploration, 2012, 36(4):623-627.

    [13]

    Sacks S Z, Kingsland M D, Lee R, et al. A perfectly matched anisotropic absorber for use as an absorbing boundary condition[J]. IEEE Transactions on Antennas & Propagation, 1995, 43(12):1460-1463.

    [14]

    Gedney D S. An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices[J]. IEEE Transactions on Antennas & Propagation, 2002, 44(12):1630-1639.

    [15]

    肖明顺, 昌彦君, 曹中林, 等. 探地雷达数值模拟的吸收边界条件研究[J]. 工程地球物理学报, 2008, 5(3):315-320.

    [16]

    Xiao M S, Chang Y J, Cao Z L, et al. Study on absorption boundary conditions for numerical simulation of ground penetrating radar[J]. Journal of Engineering Geophysics, 2008, 5(3):315-320.

    [17]

    詹应林, 昌彦君, 曹中林. 基于UPML吸收边界的探地雷达数值模拟研究[J]. 资源环境与工程, 2008, 22(2):235-238.

    [18]

    Zhan Y L, Chang Y J, Cao Z L. Numerical simulation of ground penetrating radar based on UPML absorption boundary[J]. Resources Environment and Engineering, 2008, 22(2):235-238.

    [19]

    冯德山, 谢源. 基于单轴各向异性完全匹配层边界条件的ADI-FDTD三维GPR全波场正演[J]. 中南大学学报:自然科学版, 2011, 42(8):202-210.

    [20]

    Feng D S, Xie Y. Full Wave field forward modeling of 3D GPR based on boundary conditions of uniaxial anisotropic completely matched layer[J]. Journal of Central South University:Science and Technology, 2011, 42(8):202-210.

    [21]

    冯德山, 陈承申, 戴前伟. 基于UPML边界条件的交替方向隐式有限差分法GPR全波场数值模拟[J]. 地球物理学报, 2010, 53(10):2484-2496.

    [22]

    Feng D S, Chen C S, Dai Q W. Numerical simulation of GPR full wave field with alternate direction implicit finite difference method based on UPML boundary condition[J]. Chinese Journal of Geophysics, 2010, 53(10):2484-2496.

    [23]

    冯德山, 王向宇. 基于卷积完全匹配层的旋转交错网格高阶差分法模拟弹性波传播[J]. 物探与化探, 2018, 42(4):766-776.

    [24]

    Feng D S, Wang X Y. Elastic wave propagation simulation in anisotropic media and random media using heig-order difference method of rotation staggered grids based on convolutional perfectly matched layer[J]. Geophysical and Geochemical Exploration, 2018, 42(4):766-776.

    [25]

    李静, 曾昭发, 吴丰收, 等. 探地雷达三维高阶时域有限差分法模拟研究[J]. 地球物理学报, 2010, 53(4):974-981.

    [26]

    LI J, Zeng Z F, Wu F S, et al. Study of three dimension high-order FDTD simulation for GPR[J]. Chinese Journal of Geophysics, 2010, 53(4):974-981.

    [27]

    Chew W C, Weedon W H. A 3D perfectly matched medium from modified maxwell’s equations with stretched coordinates[J]. Microwave & Optical Technology Letters, 2010, 7(13):599-604.

    [28]

    Kuzuoglu M, Mittra R. Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers[J]. IEEE Microwave & Guided Wave Lett, 1996, 6(12):447-449.

  • 加载中
计量
  • 文章访问数:  707
  • PDF下载数:  104
  • 施引文献:  0
出版历程
收稿日期:  2021-04-12
刊出日期:  2022-06-21

目录