中国自然资源航空物探遥感中心主办
地质出版社出版

基于组合震源编码的多尺度全波形反演方法

国运东. 2022. 基于组合震源编码的多尺度全波形反演方法. 物探与化探, 46(3): 729-736. doi: 10.11720/wtyht.2022.1216
引用本文: 国运东. 2022. 基于组合震源编码的多尺度全波形反演方法. 物探与化探, 46(3): 729-736. doi: 10.11720/wtyht.2022.1216
GUO Yun-Dong. 2022. Multi-scale full waveform inversion method using combined source encoding. Geophysical and Geochemical Exploration, 46(3): 729-736. doi: 10.11720/wtyht.2022.1216
Citation: GUO Yun-Dong. 2022. Multi-scale full waveform inversion method using combined source encoding. Geophysical and Geochemical Exploration, 46(3): 729-736. doi: 10.11720/wtyht.2022.1216

基于组合震源编码的多尺度全波形反演方法

  • 基金项目:

    中原油田分公司科研项目(JC21-12)

    中石化集团公司项目(P21003)

详细信息
    作者简介: 国运东(1991-),男,博士后,2020年毕业于中国石油大学(华东),研究方向为全波形反演。Email: gyd_upc@edu.cn
  • 中图分类号: P631

Multi-scale full waveform inversion method using combined source encoding

  • 全波形反演(full waveform inversion,FWI)是目前精度最高的一种速度反演工具,通过迭代反演得到高精度的地下构造,为叠前成像技术提供更准确的速度场,满足目前勘探开发日益复杂的需求。但FWI需要估计精确的震源子波,而从野外采集的地震数据提取子波是非常困难的,此外,反演过程中,模型参数与观测数据存在强的非线性关系,容易产生周波跳跃现象。针对中低波数反演过程中存在周波跳跃现象与地震子波难提取的问题,本文构建了一种基于组合震源的多尺度波形反演方法。首先对子波和地震数据进行时移组合叠加,再进行互相关梯度求取,只需要一次逆时偏移的计算量,就可以完成梯度的求取,实现多尺度反演的目标。通过模型试算,基于组合震源的FWI方法,可以达到多尺度反演的目的,使得反演结果更稳定;与不依赖子波的方法相结合,反演结果相对准确。
  • 加载中
  • [1]

    Tarantola A. Inversion of seismic reflection data in the acoustic approximation[J]. Geophysics, 1984, 49(8):1259-1266.

    [2]

    Tarantola A. Inverse problem theory:Methods for data fitting and model parameter estimation[J]. Physics of the Earth & Planetary Interiors, 1987, 57(3):350-351.

    [3]

    Song Z M, Williamson P R, Pratt R G. Frequency-domain acoustic-wave modeling and inversion of crosshole data:Part II—Inversion method,synthetic experiments and real-data results[J]. Geophysics, 1995, 60(3):796-809.

    [4]

    Pratt R G. Seismic waveform inversion in the frequency domain,Part 1:Theory and verification in a physical scale model[J]. Geophysics, 1999, 64(3):888-901.

    [5]

    Mora P. Nonlinear two-dimensional elastic inversion of multi-offset seismic data[J]. Geophysics, 1987, 52(9):1211-1228.

    [6]

    Wang G C, Du Q Z. Elastic full waveform inversion based on envelope objective function[J]. Geophysical Prospecting for Petroleum, 2016, 55(1):133-141.

    [7]

    Plessix R E, Rynja H. VTI full waveform inversion:A parameterization study with a narrow azimuth streamer data example[C]// SEG Technical Program Expanded Abstracts 2010,Society of Exploration Geophysicists, 2010:962-966.

    [8]

    刘玉柱, 黄鑫泉, 万先武, 等. 各向异性介质弹性波多参数全波形反演[J]. 地球物理学报, 2019, 62(5):1809-1823.

    [9]

    Liu Y Z, Huang X Q, Wan X W, et al. Elastic multi-parameter full-waveform inversion for anisotropic media[J]. Chinese Journal of Geophysics, 2019, 62(5):1809-1823.

    [10]

    Kamath N, Tsvankin I. Elastic full-waveform inversion for VTI media:Methodology and sensitivity analysis[J]. Geophysics, 2016, 81(2):C53-C68.

    [11]

    Brossier R, Operto S, Virieux J. Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion[J]. Geophysics, 2009, 74(6):WCC105-WCC118.

    [12]

    杨积忠, 刘玉柱, 董良国. 变密度声波方程多参数全波形反演策略[J]. 地球物理学报, 2014, 57(2):628-643.

    [13]

    Yang J Z, Liu Y Z, Dong L G. A multi-parameter full waveform inversion strategy for acoustic media with variable density[J]. Chinese Journal of Geophysics, 2014, 57(2):628-643.

    [14]

    Shin C, Cha Y H. Waveform inversion in the Laplace domain[J]. Geophysical Journal International, 2008, 173(3):922-931.

    [15]

    Shin C, Young H C. Waveform inversion in the Laplace—Fourier domain[J]. Geophys. J. Int., 2009, 177(3):1067-1079.

    [16]

    戴前伟, 陈威, 张彬. 改进型粒子群算法及其在GPR全波形反演中的应用[J]. 物探与化探, 2019, 43(1):90-99.

    [17]

    Dai Q W, Chen W, Zhang B. Improved particle swarm optimization and its application to full-waveform inversion of GPR[J]. Geophysical and Geochemical Exploration, 2019, 43(1):90-99.

    [18]

    胡光辉, 王立歆, 王杰, 等. 基于早至波的特征波波形反演建模方法[J]. 石油物探, 2015, 54(1):71-76.

    [19]

    Hu G H, Wang L X, Wang J, et al. Characteristics waveform inversion based on early arrival wave[J]. Geophysical Prospecting for Petroleum, 2015, 54(1):71-76.

    [20]

    周斯琛, 李振春, 张敏, 等. 基于截断牛顿法的频率域全波形反演方法[J]. 物探与化探, 2017, 41(1):147-152.

    [21]

    Zhou S C, Li Z C, Zhang M, et al. Full waveform inversion in frequency domain using the truncated Newton method[J]. Geophysical and Geochemical Exploration, 2017, 41(1):147-152.

    [22]

    Yong P, Liao W, Huang J, et al. Misfit function for full waveform inversion based on the Wasserstein metric with dynamic formulation[J]. Journal of Computational Physics, 2019, 399:108911.

    [23]

    Claerbout J F. Fundamentals of geophysical data processing[J]. Geophysical Journal International, 1986, 86(1):217-219.

    [24]

    Jannane M, Beydoun W, Crase E, et al. Wavelengths of earth structures that can be resolved from seismic reflection data[J]. Geophysics, 1989, 54(7):906-910.

    [25]

    Bunks C, Saleck F M, Zaleski S, et al. Multiscale seismic waveform inversion[J]. Geophysics, 1995, 60(5):1457-1473.

    [26]

    Sirgue L, Pratt R G. Efficient waveform inversion and imaging:A strategy for selecting temporal frequencies[J]. Geophysics, 2004, 69(1):231-248.

    [27]

    Boonyasiriwat C, Valasek P, Routh P, et al. An efficient multiscale method for time-domain waveform tomography[J]. Geophysics, 2009, 74(6):WCC59-WCC68.

    [28]

    Rietveld W E A, Berkhout A J. Depth migration combined with controlled illumination[J]. SEG Technical Program Expanded Abstracts, 1999, 11(1):931-934.

    [29]

    Rietveld W E A, Berkhout A J, Wapenaar C P A. Optimum seismic illumination of hydrocarbon reservoirs[J]. Geophysics, 1992, 57(10):1334-1345.

    [30]

    Rietveld W E A, Berkhout A J. Prestack depth migration by means of controlled illumination[J]. Geophysics, 1994, 59(5):801-809.

    [31]

    Romero L A, Ghiglia D C, Ober C C, et al. Phase encoding of shot records in prestack migration[J]. Geophysics, 2000, 65(2):426-436.

    [32]

    Jing X, Finn C J, Dickens T A, et al. Encoding multiple shot gathers in prestack migration[M]. Society of Exploration Geophysicists, 2000:786-789.

    [33]

    Vigh D, Starr E W. 3D prestack plane-wave,full-waveform inversion[J]. Geophysics, 2008, 73(5):VE135-VE144.

    [34]

    Krebs J R, Anderson J E, Hinkley D, et al. Fast full-wavefield seismic inversion using encoded sources[J]. Geophysics, 2009, 74(6):WCC177-WCC188.

    [35]

    Tang Y. Target-oriented wave-equation least-squares migration/inversion with phase-encoded hessian[J]. Geophysics, 2009, 74(6):WCA95-WCA107.

    [36]

    Schuster G T, Wang X, Huang Y, et al. Theory of multisource crosstalk reduction by phase-encoded statics[J]. Geophysical Journal International, 2011, 184(3):1289-1303.

    [37]

    Guitton A, Díaz E. Attenuating crosstalk noise with simultaneous source full waveform inversion[J]. Geophysical Prospecting, 2012, 60:759-768.

    [38]

    Huang Y, Schuster G T. Multisource least-squares migration of marine streamer and land data with frequency-division encoding[J]. Geophysical Prospecting, 2012, 60(4):663-680.

    [39]

    黄建平, 孙陨松, 李振春, 等. 一种基于分频编码的最小二乘裂步偏移方法[J]. 石油地球物理勘探, 2014, 49(4):702-707.

    [40]

    Huang J P, Sun Y S, Li Z C, et al. Least-squares split-step migration based on frequency-division encoding[J]. Oil Geophysical Prospecting, 2014, 49(4):702-707.

    [41]

    Dai W, Huang Y, Schuster G T. Least-squares reverse time migration of marine data with frequency-selection encoding[J]. Geophysics, 2013, 78(4):S233-S242.

    [42]

    胡春辉. 时间域时移多尺度全波形反演[D]. 合肥: 中国科学技术大学, 2017.

    [43]

    Hu C H. A time-shift method for time domain multiscale full waveform inversion[D]. Hefei: University of Science and Technology of China, 2017.

    [44]

    曲英铭, 李振春, 黄建平, 等. 基于多尺度双变网格的时间域全波形反演[J]. 石油物探, 2016, 55(2):241-250.

    [45]

    Qu Y M, Li Z C, Huang J P, et al. Full waveform inversion based on multi-scale dual-variable grid in time domain[J]. Geophysical Prospecting for Petroleum, 2016, 55(2):241-250.

    [46]

    Qu Y, Li Z, Huang J, et al. Multi-scale full waveform inversion for areas with irregular surface topography in an auxiliary coordinate system[J]. Exploration Geophysics, 2016, 49(1):68-80.

    [47]

    Choi Y, Alkhalifah T. Source-independent time-domain waveform inversion using convolved wavefields:Application to the encoded multisource waveform inversion[J]. Geophysics, 2011, 76(5):R125-R134.

    [48]

    Guo Y, Huang J, Cui C, et al. Multi-source multi-scale source-independent full waveform inversion[J]. Journal of Geophysics and Engineering, 2019, 16(3):479-492.

  • 加载中
计量
  • 文章访问数:  1023
  • PDF下载数:  135
  • 施引文献:  0
出版历程
收稿日期:  2021-04-12
刊出日期:  2022-06-21

目录