An analysis of influencing factors of visco-acoustic reverse time migration imaging in borehole seismic
-
摘要: 当前油气勘探目标已由简单构造油气藏转向深层复杂构造油气藏,其具有的储层薄、分布广、赋存状态隐蔽等特点对地震偏移成像技术提出了巨大挑战。与地面地震相比,井中地震震源位于井中,靠近目的层,且波场少一次经过低降速带,因此理论上具有资料信噪比高、储层识别力强等优点,能够实现井周储层精细成像的目的。然而,井中地震特殊的观测方式使得成熟的地面地震成像技术难以直接应用。此外,井中地震震源能量弱,地层的吸收衰减效应的影响强于地面地震。因此,需要发展针对性的井中地震偏移成像方法。鉴于上述因素,本文将粘声逆时偏移成像方法应用至井中地震,通过模型试算探讨多种因素对井中地震偏移成像效果的影响,为井中地震技术在实际中的应用提供理论支持和技术指导。Abstract: At present,the targets of oil and gas exploration have transformed from simple structural oil and gas reservoirs into deep complex structural oil and gas reservoirs.The small thickness,wide distribution,and hidden occurrence state of the reservoirs pose great challenges to seismic migration imaging technology.Compared with ground seismic,the seismic sources of the borehole seismic are located in wells and close to target layers.Meanwhile,the times that wave field induced by the borehole seismic passes through the low-velocity zone reduce by one.Therefore,the borehole seismic has the advantages of high signal-to-noise ratio (SNR) of data and strong reservoir identification in theory and thus can serve the purpose of the fine imaging of the reservoirs around wells.However,the special observation method makes it difficult to directly apply mature ground seismic imaging technology to the borehole seismic.In addition,due to the weak source energy of the borehole seismic,the formation absorption attenuation effect produces stronger impacts on the borehole seismic than on the ground seismic.Therefore,it is necessary to develop a targeted migration imaging method for borehole seismic.This study applied the visco-acoustic reverse-time migration imaging method to the borehole seismic and discussed the influence of various factors on the migration imaging effect of borehole seismic through model calculation,aiming to provide theoretical and technical support for the practical application of borehole seismic technology.
-
-
[1] 何登发, 李德生, 童晓光, 等. 中国沉积盆地油气立体综合勘探论[J]. 石油与天然气地质, 2021, 42(2):265-284.
[2] He D F, Li D S, Tong X G, et al. Integrated 3D hydrocarbon exploration in sedimentary basins of China[J]. Oil & Gas Geology, 2021, 42(2):265-284.
[3] Weatherby B B. Method of making sub-surface determinations[P]. US, US2062151,
[4] Deily F H, Dareing D W, Paff G H, et al. Downhole measurements of drill string forces and motions[J]. Journal of Engineering for Industry, 1968, 90(2):217-225.
[5] Squire W D, Alsup J M. Linear signal processing and ultrasonic transversal filters[J]. IEEE Transactions on Microwave Theory & Techniques, 1969, 17(11):1020-1040.
[6] Haldorsen J, Miller D E, Walsh J J. Walk-away VSP using drill noise as a source[J]. Geophysics, 1995, 60(4):978.
[7] 方家福. RVSP简介[J]. 地震学刊, 1994(2):61-84.
[8] Fang J F. A Brief introduction to RVSP[J]. Journal of Disaster Prevention and Mitigation Engineering, 1994(2):61-84.
[9] 杨微. 随钻地震信号检测方法研究[D]. 北京: 中国地震局地球物理研究所, 2007.
[10] Yang W. Single detection of the drill bit seismic wave whlie drilling[D]. Beijing: Institute of Geophysics,China Earthquake Administration, 2007.
[11] 吕海川, 朱伟伦, 贾衡天, 等. 随钻VSP测量中地震波场的数值模拟[J]. 石油机械, 2017, 45(2):10-12,44.
[12] Lyu H C, Zhu W L, Jia H T, et al. Numerical simulation of seismic wave field in VSP-WD[J]. China Petroleum Machinery, 2017, 45(2):10-12,44.
[13] Liang Z H. Wavefield processing of reverse VSP data[J]. Seg Technical Program Expanded Abstracts, 1991, 10(1):1646.
[14] 胡建平. 变偏移距VSP射线追踪模型[J]. 西安工程学院学报, 1998(S1):10-13.
[15] Hu J P. Walkaway VSP ray tracing model[J]. Journal of Earth Sciences and Environment, 1998(S1):10-13.
[16] 朱龙生. 多方位角逆VSP层析成像[D]. 西安: 长安大学, 2003.
[17] Zhu L S. Multi-azimuth Inverse VSP tomography[D]. Xi'an: Chang'an University, 2003.
[18] 胡明顺. 煤层气RVSP地震勘探成像方法研究[D]. 徐州: 中国矿业大学, 2013.
[19] Hu M S. Study on RVSP seismic imaging for coalbed methane exploration[D]. Xuzhou: China University of Mining and Technology, 2013.
[20] 金红娣, 潘冬明, 杨光. RVSP等效地面处理方法研究[J]. 地球物理学进展, 2015, 30(2):641-649.
[21] Jin H D, Pan D M, Yang G. Study on equivalent surface data processing method in RVSP[J]. Progress in Geophysics, 2015, 30(2):641-649.
[22] 张辉. 碳酸岩裸露区煤田RVSP勘探技术研究与应用[D]. 徐州: 中国矿业大学, 2018.
[23] Zhang H. Research and application of RVSP exploration technology in Carbonate exposed coalfield[D]. Xuzhou: China University of Mining and Technology, 2018.
[24] Hu M S, Pan D M, Zhou F B, et al. Multi-hole joint acquisition of a 3D-RVSP in a karst area:Case study in the Wulunshan Coal Field,China[J]. Appl. Geophys., 2020, 17(1): 37-53.
[25] 陶鹏飞, 尹奇峰, 赵红飞, 等. 井中地震波CT浅层城市地下空间成像[J]. 地下空间与工程学报, 2019, 15(S2):687-693.
[26] Tao P F, Yin Q F, Zhao H F, et al. Shallow surface urban underground space imaging using borehole seismic wave CT[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(S2):687-693.
[27] 赵邦六, 董世泰, 曾忠. 井中地震技术的昨天、今天和明天——井中地震技术发展及应用展望[J]. 石油地球物理勘探, 2017, 52(5):1112-1123.
[28] Zhao B L, Dong S T, Zeng Z. Borehole seismic development,status quo and future:Application prospect of borehole seismic[J]. OGP, 2017, 52(5):1112-1123.
[29] 牛欢, 潘冬明, 周国婷. 井中地震VSP观测系统正演模拟[J]. 物探与化探, 2013, 37(2):280-286.
[30] Niu H, Pan D M, Zhou G T. Forward modeling of borehole seismic VSP observation system[J]. Geophysical and Geochemical Exploration, 2013, 37(2):280-286.
[31] 陈可洋. 几种地震观测方式的逆时成像分析[J]. 岩性油气藏, 2013, 25(1):95-101.
[32] Chen K Y. Reverse-time migration analysis of several seismic observation models[J]. Lithologic Reservoirs, 2013, 25(1):95-101.
[33] Kjartansson E. Constant Q-wave propagation and attenuation[J]. Journal of Geophysical Research:Solid Earth, 1979, 84(B9):4737-4748.
[34] Zhu T, Harris J M. Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians[J]. Geophysics, 2014, 79(3):S165-S174.
[35] Claerbout, Jon F. Toward a unified theory of reflector mapping[J]. Geophysics, 1971, 36(3):467.
[36] Billette F J, Brandsberg-Dahl S. The 2004 BP velocity benchmark[C]// 67th EAGE Conference & Exhibition, 2005.
-
计量
- 文章访问数: 400
- PDF下载数: 89
- 施引文献: 0