Application of comprehensive geophysical exploration in geothermal resources on the eastern margin of Yinchuan Basin
-
摘要: 银川盆地东缘天山海世界地热田的发现,揭示了该区域赋存优质地热资源,其成藏地质条件显著有别于盆地内“传导型”地热,为宁夏黄河流域清洁能源的研究提供了新的方向。本文以区域地质、地球物理特征为基础,针对1:5万重力、可控源大地电磁测深与微动测量资料进行处理与分析。研究结果显示:奥陶系基底隆升地带位于灵武凹陷东侧,沿黄河断裂呈“S”形展布,至天山海世界达隆升最高部位,并与NW向局部隆起区叠合;深部储热层奥陶系为中高阻层特征,中部第一盖层石炭系—二叠系表现为中低阻、弱低速层,浅部第二盖层古近系—新近系与低阻、低速层对应。以上述研究成果为基础,预测了3处地热资源开发利用远景区。Abstract: A geothermal field has been discovered in the Tianshan Sea World on the eastern margin of the Yinchuan Basin, revealing that the region has high-quality geothermal resources. The geological conditions for the formation of the geothermal field are significantly different from those of the conduction-type geothermal resources within basins, providing a new direction for the study of clean energy in the Yellow River Basin in Ningxia. This study processes and analyzes the data of 1:50,000-scaled gravity surveys, controlled source audio-frequency magnetotellurics (CSAMT), and microtremor survey based on regional geological and geophysical characteristics. The results of the study are as follows. The uplifting zone of the Ordovician basement lies on the east side of the Lingwu Sag and spreads in an "S" shape along the Yellow River Fault. This zone reaches its highest part in the Tianshan Sea World, where it merges with the NW-trending local uplift. The Ordovician of the deep reservoirs in the geothermal field is characterized by medium-high resistance. The Carboniferous-Permian of the first cap rock at a moderate depth shows medium-low resistance and low seismic velocity. The Paleogene-Neogene of the second shallow cap rock corresponds to the formation with low resistance and low seismic velocity. Using these results, three prospective areas for developing and utilization of geothermal resources have been predicted.
-
-
[1] 王钧, 黄尚瑶, 黄歌山, 等. 华北中新生代沉积盆地的地温分布及地热资源[J]. 地质学报, 1983, 57(3):94-106.
[2] Wang J, Huang S Y, Huang G S, et al. Geotemperature distribution and geothermal resources in the Meso-cenozoic basins of North China[J]. Acta Geologica Sinica, 1983, 57(3):94-106.
[3] 蔺文静, 刘志明, 王婉丽, 等. 中国地热资源及其潜力评估[J]. 中国地质, 2013, 40(1):318-327.
[4] Lin W J, Liu Z M, Wang W L, et al. The assessment of geothermal resources potential of China[J]. Geology in China, 2013, 40(1):318-327.
[5] 王转转, 欧成华, 王红印, 等. 国内地热资源类型特征及其开发利用进展[J]. 水利水电技术, 2019, 50(6):187-195.
[6] Wang Z Z, Ou C H, Wang H Y, et al. The characteristics and development of geothermal resources in China[J]. Water Resources and Hydropower Engineering, 2019, 50(6):187-195.
[7] 陈晓晶, 虎新军, 李宁生, 等. 银川盆地东缘地热成藏模式探讨[J]. 物探与化探, 2021, 45(3):583-589.
[8] Chen X J, Hu X J, Li N S, et al. A discussion on geothermal accumulation model on the eastern margin of Yinchuan Basin[J]. Geophysical and Geochemical Exploration, 2021, 45(3):583-589.
[9] 刘天佑. 地球物理勘探概论[M]. 北京: 地质出版社, 2007.
[10] Liu T Y. Introduction to geophysical prospecting[M]. Beijing: Geological Publishing House, 2007.
[11] 黄力军. 物探方法在地热调查中的应用效果.[J]. 物探与化探, 1988, 12(2):129-133.
[12] Huang L J. The application result of geophysical method in geothermal survey[J]. Geophysical and Geochemical Exploration, 1988, 12(2):129-133.
[13] 胡宁, 张良红, 高海发. 综合物探方法在嘉兴地热勘查中的应用[J]. 物探与化探, 2011, 35(3):319-324.
[14] Hu N, Zhang L H, Gao H F. The application of integrated geophysical exploration to geothermal exploration in Jiaxing City[J]. Geophysical and Geochemical Exploration, 2011, 35(3):319-324.
[15] Pamukcu O A, Akcig Z, Demirbas S, et al. Investigation of crustal thickness in Eastern Anatolia 279 using gravity, magnetic and topographic data[J]. Pure Apply. Geophysics, 2007, 164(11):2345-2358.
[16] 李学云, 刘百红, 陈浩辉, 等. 遵化市汤泉地热资源综合评价[J]. 工程地球物理学报, 2014, 11(6):894-900.
[17] Li X Y, Liu B H, Chen H H, et al. Comprehensive evaluation of Tangquan geothermal resources in Zunhua City[J]. Chinese Journal of Engineering Geophysics, 2014, 11(6): 894-900.
[18] 刘长生. 陈家凹陷MT法地热勘探实践[J]. 特种油气藏, 2008, 15(S):328-329.
[19] Liu C S. Practice of MT Geothermal Exploration in Chenjia Depression[J]. Special Oil & Gas Reservoirs, 2008, 15(S):328-329.
[20] 汪琪. 宁夏地热范围圈定与资源量评价[D]. 北京: 中国地质大学(北京), 2015.
[21] Wang Q. Delineation of Ningxia’s geothermal area and evalution of resources[D]. Beijing: China University of Geosciences(Beijing), 2015.
[22] 付微, 徐佩芬, 凌苏群, 等. 微动勘探方法在地热勘查中的应用[J]. 上海国土资源, 2012, 33(3):71-75.
[23] Fu W, Xu P F, Ling S Q, et al. Application of the microtremor survey method to geothermal exploration[J]. Shanghai Land & Resources, 2012, 33(3):71-75.
[24] 刘远. 地微动探测与大地电磁测深联合使用的研究[D]. 北京: 中国地质大学(北京), 2008.
[25] Liu Y. Study of microtremor and magnetotelluric associated survey[D]. Beijing: China University of Geosciences(Beijing), 2008.
[26] 张宇, 刘峥. 综合方法圈定银川盆地地热田范围[J]. 宁夏工程技术. 2009, 8(3):247-249.
[27] Zhang Y, Liu Z. Application of an integrated approach to determine the scope of Yinchuan Basin geothermal field[J]. Ningxia Engineering Technology, 2009, 8(3):247-249.
[28] 高亮, 陈海波, 李向宝, 等. 综合电磁法在银川盆地地热资源勘查中的应用[J]. 山东理工大学学报:自然科学版, 2013, 27(3):62-66.
[29] Gao L, Chen H B, Li X B, et al. Application of comprehensive electromagnetic method in geothermal exploration of Yinchuan Basin[J]. Journal of Shandong University of Technology:Natural Science Edition, 2013, 27(3):62-66.
[30] 曹学刚, 程国强, 李龙亮. MT法在银川平原黄河东岸地热资源调查评价中的应用[J]. 西部探矿工程, 2021(1):141-144.
[31] Cao X G, Cheng G Q, Li L L. Application of MT in the investigation and evaluation of geothermal resources on the east bank of the Yellow River in Yinchuan Plain[J]. West-China Exploration Engineering, 2021(1):141-144.
[32] 左丽琼, 王彩会, 荆慧, 等. 综合物探方法在南通小洋口地区地热勘查中的应用[J]. 工程地球物理学报, 2016, 13(1):122-129.
[33] Zuo L Q, Wang C H, Jin H, et al. The application of comprehensive geophysical prospecting method to geothermal prospecting in Xiaoyangkou of Nantong City in Jiangsu[J]. Chinese Journal of Engineering Geophysics, 2016, 13(1):122-129.
[34] 徐占海, 李捍国, 宋新华, 等. 中国区域地质志·宁夏志[M]. 北京: 地质出版社, 2017.
[35] Xu Z H, Li H G, Song X H, et al. Regional geology of China, Ningxia[M]. Beijing: Geological Publishing House, 2017.
[36] 方盛明, 赵成彬, 柴炽章, 等. 银川断陷盆地地壳结构与构造的地震学证据[J]. 地球物理学报, 2009, 52(7):1768-1775.
[37] Fang S M, Zhao C B, Chai C Z, et al. Seismological evidence of crustal structure and tectonics in Yinchuan Rift Basin[J]. Chinese Journal of Geophysics, 2009, 52(7):1768-1775.
[38] 酆少英, 高瑞, 龙长兴, 等. 银川地堑地壳挤压应力场:深地震反射剖面[J]. 地球物理学报, 2011, 54(3):692-697.
[39] Feng S Y, Gao R, Long C X, et al. Crustal compression stress field in Yinchuan Graben:Deep seismic reflection profile[J]. Chinese Journal of Geophysics, 2011, 54(3):692-697.
[40] 侯旭波, 崔红庄, 郇玉龙. 银川盆地不同构造层构造样式及形成演化分析[J]. 东北石油大学学报, 2012, 36(6):28-33.
[41] Hou X B, Cui H Z, Huan Y L. Analysis of structural style and tectonic evolution in Yinchuan basin[J]. Journal of Northeast Petroleum University, 2012, 36(6):28-33.
[42] 刘保金, 酆少英, 姬计法, 等. 贺兰山和银川盆地的岩石圈结构和断裂特征——深地震反射剖面结果[J]. 中国科学:地球科学, 2017, 47(22):179-190.
[43] Liu B J, Feng S Y, Ji J F, et al. Lithospheric structure and faulting characteristics of the Helan Mountains and Yinchuan basin: Results of deep seismic reflection profiling[J]. Science China:Earth Sciences, 2017, 47(2):179-190.
[44] 徐世光, 郭远生. 地热学基础[M]. 北京: 科学出版社, 2009.
[45] Xu S G, Guo Y S. Fundamentals of Geothermal[M]. Beijing: Science Press, 2009.
-
计量
- 文章访问数: 873
- PDF下载数: 76
- 施引文献: 0