Genetic mechanisms of low-resistivity gas zones in structure A of sag X
-
摘要: 经勘探开发证实,X凹陷A构造H组地层Q3c上部层段存在大量低阻气层。针对该层段地质沉积环境认识不清、储层微观认识不深入、气层低阻成因尚未明确等问题,以研究区3口井的测井资料为基础,结合钻井、录井资料和大量岩石物理实验资料开展相关研究。对研究区开展了基于薄片鉴定资料的岩石学、物性特征分析;通过连井剖面、特殊测井资料并结合大量岩石物理实验对低阻气层成因机理开展研究;基于数字岩心技术构建多组分导电模型,从微观可视化尺度证实了低阻气层成因机理,开展有限元电性模拟定量分析各低阻成因对电阻率降低的贡献。研究结果表明,由于高阳离子交换容量粘土矿物的存在以及良好物性基础上发育复杂孔隙结构,共同导致了研究区Q3c上部气层的低阻响应。其中,粘土附加导电性对低阻响应的贡献为35.63%,良好物性条件下的复杂孔隙结构对低阻响应的贡献达到64.37%,电性模拟结果与测井电性特征吻合,证实了Q3c上部低阻气层成因机理。Abstract: As confirmed by exploration and development, many low-resistivity gas zones exist in the upper portion of layer Q3c of the H Formation in structure A of Sag X. Given the problems such as unclear understanding of the geological sedimentary environment, insufficient microcosmic knowledge about the reservoirs, and unclear causes of the low resistivity of the gas zones, this study conducted extensive research based on the log data of three wells in the study area, as well as the data on drilling and many petrophysical experiments. Specifically, the petrological and physical property characteristics of the study area were studied using the thin-section identification data; the genetic mechanisms of low-resistivity gas zones were studied using the well tie sections and the special log data, as well as the data of many petrophysical experiments; the formation mechanisms of low-resistivity gas zones were confirmed from the microscopic visualization scale by constructing a multi-component conductivity model using the digital core technique, and the contributions of various low-resistivity geneses to the decrease in resistivity were quantitatively analyzed through the finite element-based electrical simulations. As indicated by the study results, the low-resistivity response of the gas zones in the study area is caused by the presence of clay minerals with high clay content and high cation exchange capacity and also results from the complex pore structure formed under the favorable physical property conditions in the anomalous high-pressure depositional setting. The contributions of the clay additional conductivity and the complex pore structure to the low resistivity are 35.63% and up to 64.37%, respectively. The electrical simulation results are consistent with the log-derived electrical characteristics, verifying the genetic mechanisms of the low-resistivity gas zones in the upper portion of the Q3c.
-
-
[1] 陶士振, 邹才能. 东海盆地西湖凹陷天然气成藏及分布规律[J]. 石油勘探与开发, 2005, 32(4): 103-110.
[2] Tao S Z, Zou C N. Accumulation and disrtibution of natural gases in Xihu Sag, East China Sea Basin[J]. Petroleum Exploration & Development, 2005, 32(4): 103-110.
[3] 何将启, 梁世友, 陈拥锋, 等. 东海盆地西湖凹陷新生代构造演化对油气的控制作用——以平湖组油气响应为例[J]. 石油实验地质, 2008, 30(3): 221-226.
[4] He J Q, Liang S Y, Chen Y F, et al. Control on petroleum by Cenozoic tectonic evolution in the Xihu Sag, the East China Sea Basin: Taking petroleum response of the Pinghu Foramation as an example[J]. Petroleum Geology & Experiment, 2008, 30(3):221-226.
[5] 张银国. 东海西湖凹陷花港组油气地质条件与油气分布规律[J]. 石油实验地质, 2010, 32(3): 223-241.
[6] Zhang Y G. Petroleum Geology and hydrocarbom distribution pattern of Huagang Formation in the Xihu sag of the East China Sea[J]. Petroleum Geology & Experiment, 2010, 32(3): 223-241.
[7] 董春梅, 赵仲祥, 张宪国, 等. 西湖凹陷中北部花港组物源及沉积相分析[J]. 东北石油大学学报, 2018, 42(5): 25-34.
[8] Dong C M, Zhao Z X, Zhang X G, et al. Analysis of provenance and sedimentary facies of Huagang formation in the north central of Xihu Sag[J]. Journal of Noryheast Petroleum University, 2018, 42(5): 25-34.
[9] 胡明毅, 柯岭, 梁建设, 等. 西湖凹陷花港组沉积相特征及相模式[J]. 石油天然气学报, 2010, 32(5): 1-5.
[10] Hu M Y, Ke L, Liang J S, et al. The characteristics and pattern of sedimentary facies of Huagang Formation in Xihu Depression[J]. Journal of Oil and Gas Technology, 2010, 32(5): 1-5.
[11] 姜艳娇. A地区低孔渗复杂储层导电机理及产能预测方法研究[D]. 东营: 中国石油大学(华东), 2017.
[12] Jiang Y J. The research of conductive mechanism and productivity prediction of low porosity and low permeability reservoir in A area[D]. Dongying: China University of Petroleum(East China), 2017.
[13] 王迪, 戚家振, 陈现, 等. 东海N气田低阻气层成因分析及饱和度定量评价[J]. 复杂油气藏, 2017, 10(4):7-13.
[14] Wang D, Qi J Z, Chen X, et al. Forming reason analysis and saturation quantitative evaluation of low-resistivity gas layer in N Gas field of Donghai Sea[J]. Complex Hydrocarbon Reservoirs, 2017, 10(4): 7-13.
[15] 徐昉昊, 徐国盛, 刘勇, 等. 东海西湖凹陷中央反转构造带古近系花港组致密砂岩储集层控制因素[J]. 石油勘探与开发, 2020, 47(1): 98-109.
[16] Xu F H, Xu G S, Liu Y, et al. Factors controlling the development of tight sandstone reservoirs in the Huagang Formation of the central inverted structual belt in Xihu sag, East China Sea Basin[J]. Petroleum Exploration and Development, 2020, 47(1): 98-109.
[17] 刘金水, 曹冰, 徐志星, 等. 西湖凹陷某构造和花港组沉积相及致密砂岩储层特征[J]. 成都理工大学学报:自然科学版, 2012, 39(2): 130-136.
[18] Liu J S, Cao B, Xu Z X, et al. Sedimentary facies and the characteristics of tight sandstone reservoirs of Huagang Formation in Xihu Depression, East China Sea Basin[J]. Journal of Chengdu Unibersity of Technology:Natural Science Edition, 2012, 39(2): 130-136.
[19] 程相志. 低阻油气层识别评价技术及分布规律研究[D]. 东营: 中国石油大学(华东), 2008.
[20] Cheng X Z. Study of recognition technology and distribution law on low-resistivity oil reservoir[D]. Dongying: China University of Petroleum(East China), 2008.
[21] 杜栩, 郑洪印, 焦秀琼. 异常压力与油气分布[J]. 地学前缘, 1995, 2(3/4):137-148.
[22] Du X, Zheng H Y, Jiao X Q. Abnormal pressure and hydrocarbon accumulation[J]. Earth Science Frontiers, 1995, 2(3/4): 137-148.
[23] 赵靖舟, 李军, 徐泽阳. 沉积盆地超压成因研究进展[J]. 石油学报. 2017, 38(9): 973-998.
[24] Zhao J Z, Li J, Xu Z Y. Advances in the origin of overpressure in sedimentary basins[J]. Acta Petrolei Sinica, 2017, 38(9): 973-998.
[25] Osborne M J, Swarbrick R E. Mechanisms for generating overpressure in sedimentary basins: A reevaluation: Reply[J]. AAPG Bulletin, 2001, 85(12): 2119-2119.
[26] 李超, 罗晓容, 张立宽. 泥岩化学压实作用的超压响应与孔隙压力预测[J]. 中国矿业大学学报, 2020, 49(5): 951-973.
[27] Li C, Luo X R, Zhang L K. Overpressure responses for chemical compaction of mudstones and the pore pressure prediction. Jouranl of China University of Mining and Technology[J]. Journal of China University of Ming and Technology, 2020, 49(5): 951-973.
[28] 褚庆忠. 异常压力形成机制研究综述[J]. 天然气勘探与开发, 2001, 24(4): 38-46.
[29] Chu Q Z. Review of abnormal pressure formation mechanism[J]. Natural Gas Exploration and Development, 2001, 24(4): 38-46.
[30] 查明, 曲江秀, 张卫海. 异常高压与油气成藏机理[J]. 石油勘探与开发, 2002, 29(1): 19-23.
[31] Zha M, Qu J X, Zhang W H. The relationship between overpressure and reservoir forming mechanism[J]. Petroleum Exploration and Development, 2002, 29(1): 19-23.
[32] Yan W C, Sun J M, Zhang J Y, et al. Studies of electrical properties of low-resistivity sandstones based on digital rock technology[J]. Journal of Geophysics and Engineering, 2018, 15(1):153-163.
[33] 李霞, 李潮流, 李波. 致密砂岩岩电响应规律与饱和度评价方法[J]. 石油勘探与开发, 2020, 47(1): 202-212.
[34] Li X, Li C L, Li B. Response laws of rock electrical property and saturation evaluation method of tight sandstone[J]. Petroleum Exploration and Development, 2020, 47(1): 202-212.
-
计量
- 文章访问数: 504
- PDF下载数: 61
- 施引文献: 0