Application of Hilbert-Huang transform in EH-4 data processing
-
摘要: 工频噪声源于社会生产活动中产生的电磁噪声,常会造成视电阻率曲线病态或发散。为了提高数据处理与解释的精度,本文针对EH-4数据中常见的工频噪声,采用希尔伯特—黄变换进行去噪处理,通过对实际数据的时间序列处理分析可知,该方法利用数据自身的时间尺度特征自适应地分解信号,能够很好地去除工频噪声,为大地电磁信号的去噪提供了一条有效的路径。另外,本文还针对经验模态分解过程中产生严重的模态混叠及“端点效应”进行分析,运用聚合经验模态(EEMD)对仿真信号及实测数据的时间序列进行分解,有效地解决了模态混叠等问题。
-
关键词:
- EH-4去噪 /
- 经验模态法(EMD) /
- 希尔伯特—黄变换(HHT) /
- 聚合经验模态(EEMD)
Abstract: Industrial frequency noise comes from the electromagnetic noise produced in social activities, and it causes apparent resistivity curves to become pathological or divergent. To improve the accuracy of data processing and interpretation, this study used the Hilbert-Huang transform (HHT) to remove the common power frequency noise in EH-4 data. According to the time series processing and analysis results of measured data, this method can self-adaptively decompose signals according to the time-scale characteristics of the data and successfully remove the industrial frequency noise in the data, thus providing an effective way to remove the noise in magnetotelluric signals. In addition, this study also analyzed the serious modal aliasing and "end effect" occurring in the process of the empirical mode decomposition and decomposed simulation signals and the time series of measured data using the ensemble empirical mode decomposition (EEMD), effectively solving problems such as modal aliasing. -
-
[1] 王书明, 王家映. 大地电磁信号统计特征分析[J]. 地震学报, 2004, 26(6): 669-674.
[2] Wang S M, Wang J Y. Analysis on statistic characteristics of magnetotelluric signal[J]. Acta Seismologica Sinica, 2004, 26(6): 669-674.
[3] 王书明, 王家映. 关于大地电磁信号非最小相位性的讨论[J]. 地球物理学进展, 2004, 19(2): 216-221.
[4] Wang S M, Wang J Y. Discussion on the nonminimum phase of magnetotelluric signals[J]. Progress in Geophysics, 2004, 19(2): 216-221.
[5] 何兰芳, 王绪本, 何展翔, 等. MT时间序列的小波去噪分析[J]. 地震地质, 2001, 23(2): 222-226.
[6] He L F, Wang X B, He Z X, et al. Wavelet-based denoising of MT time series[J]. Seismology and Geology, 2001, 23(2): 222-226.
[7] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceeding of the Royal Society of London,1998, 454(1971):903-995.
[8] Huang N E, Shen Z, Long S R. A new view of the nonlinear water waves:The Hilbert spectrum[J]. Annual Review of Fluid. 1999, 31(1):417-457.
[9] 谭善文. 多分辨希尔伯特—黄(Hilbert-Huang)变换方法的研究[D]. 重庆: 重庆大学, 2001.
[10] Tan S W. Research on multi-resolution Hilbert-Huang transformation method[D]. Chongqing: Chongqing University, 2001.
[11] 杨生. 大地电磁测深法环境噪声抑制研究及应用[D]. 长沙: 中南大学, 2004.
[12] Yang S. Research and application of environmental noise restraining by magnetotelluric sounding[D]. Changsha: Central South University, 2004.
[13] 化希瑞, 汤井田, 朱正国, 等. EH-4系统的数据二次处理技术及应用[J]. 地球物理学进展, 2008, 23(4): 1261-1268.
[14] Hua X R, Tang J T, Zhu Z G, et al. The improvement and applications of EH-4 system data processing technique[J]. Progress in Geophysics, 2008, 23(4): 1261-1268.
[15] 汤井田, 蔡剑华, 任政勇, 等. Hilbert-Huang变换与大地电磁信号地时频分析[J]. 中南大学学报:自然科学版, 2009, 40(5):1400-1405.
[16] Tang J T, Cai J H, Ren Z Y, et al. Hilbert-Huang transform and time-frequency analysis of magnetotelluric signal[J]. Journal of Central South University:Science and Technology, 2009, 40(5):1400-1405.
[17] 练继建, 荣钦彪, 董霄峰, 等. 抑制模态混叠的HHT结构模态参数识别方法研究[J]. 振动与冲击, 2018, 37(18):1-8.
[18] Lian J J, Rong Q B, Dong X F, et al. Structural model parameter identification method based on an improved HHT for suppressing mode mixing[J]. Journal of Vibration and Shock, 2018, 37(18):1-8.
[19] 严家斌. 大地电磁信号处理理论及方法研究[D]. 长沙: 中南大学, 2003.
[20] Yan J B. Research on the theory and method of magnetotelluric signal processing[D]. Changsha: Central South University, 2003.
[21] 张双喜, 陈超, 王林松, 等. 二维经验模态分解及其在位场去噪和分离中的应用[J]. 地球物理学进展, 2015, 30(6): 2855-2862.
[22] Zhang S X, Chen C, Wang L S, et al. The bidimensional empirical mode decomposition and its applications to denoising and separation of potential field[J]. Progress in Geophysics, 2015, 30(6): 2855-2862.
[23] 白大为, 底青云, 王光杰, 等. Hilbert-Huang变换与E信号处理[J]. 地球物理学进展, 2009, 24(3): 1032-1038.
[24] Bai D W, Di Q Y, Wang G J, et al. Hilbert-Huang transformation and ELF signal processing[J]. Progress in Geophysics, 2009, 24(3): 1032-1038.
[25] 于彩霞, 巍文博, 景建恩, 等. 希尔伯特—黄变换在海底大地电磁测深数据处理中的应用[J]. 地球物理学进展, 2010, 25(3): 1046-1056.
[26] Yu C X, Wei W B, Jing J E, et al. Application of Hilbert-Huang transformation to marine magnetotelluric sounding data processing[J]. Progress in Geophysics, 2010, 25(3): 1046-1056.
[27] 齐天, 裘焱, 吴亚锋. 利用聚合经验模态分解抑制振动信号中的模态混叠[J]. 噪声与振动控制, 2010, 30(2): 103-106.
[28] Qi T, Qiu Y, Wu Y F. Application of EEMD to suppression of mode mixing in oscillation signals[J]. Noise and Vibration Control, 2010, 30(2): 103-106.
[29] 吕建新, 吴虎胜, 田杰. EEMD的非平稳信号降噪及其故障诊断应用[J]. 计算机工程与应用, 2011, 47(28): 223-227.
[30] Lyu J X, Wu H S, Tian J. Signal denoising based on EEMD for non-stationary signals and its application in fault diagnosis[J]. Computer Engineering and Applications, 2011, 47(28): 223-227.
[31] 陈可, 李野, 陈澜. EEMD分解在电力系统故障信号检测中的应用[J]. 计算机仿真, 2010, 27(3): 263-266.
[32] Chen K, Li Y, Chen L. Ensemble empirical mode decomposition for power quality detection applications[J]. Computer Simulation, 2010, 27(3): 263-266.
[33] Wu Z, Huang N E. Ensemble empirical mode decomposition: A noise assisted data analysis method[J]. Advance in Adaptive Data Analysis, 2009, 1(1): 1-41.
[34] 刘慧婷, 张吴, 程家兴. 基于多项式拟合算法的EMD端点问题的处理[J]. 计算机工程与应用, 2004, 40(16): 84-86,100.
[35] Liu H T, Zhang W, Cheng J X. Dealing with the end issue of EMD based on polynomial fitting algorithm[J]. Computer Engineering and Applications, 2004, 40(16): 84-86,100.
[36] 黄大吉, 赵进平, 苏纪兰. 希尔伯特—黄变换的端点延拓[J]. 海洋学报, 2003, 25(1): 1-11.
[37] Huang D J, Zhao J P, Su J L. Endpoint extension of Hilbert-Huang transform[J]. Acta Oceanologica Sinica, 2003, 25(1): 1-11.
-
计量
- 文章访问数: 355
- PDF下载数: 42
- 施引文献: 0