中国自然资源航空物探遥感中心主办
地质出版社出版

基于改进麻雀搜索算法的瑞利波频散曲线反演

孙旭, 计子琦, 杨庆义, 刘博政. 2022. 基于改进麻雀搜索算法的瑞利波频散曲线反演. 物探与化探, 46(5): 1267-1275. doi: 10.11720/wtyht.2022.1486
引用本文: 孙旭, 计子琦, 杨庆义, 刘博政. 2022. 基于改进麻雀搜索算法的瑞利波频散曲线反演. 物探与化探, 46(5): 1267-1275. doi: 10.11720/wtyht.2022.1486
SUN Xu, JI Zi-Qi, YANG Qing-Yi, LIU Bo-Zheng. 2022. Inversion of Rayleigh wave dispersion curves based on the improved sparrow search algorithm. Geophysical and Geochemical Exploration, 46(5): 1267-1275. doi: 10.11720/wtyht.2022.1486
Citation: SUN Xu, JI Zi-Qi, YANG Qing-Yi, LIU Bo-Zheng. 2022. Inversion of Rayleigh wave dispersion curves based on the improved sparrow search algorithm. Geophysical and Geochemical Exploration, 46(5): 1267-1275. doi: 10.11720/wtyht.2022.1486

基于改进麻雀搜索算法的瑞利波频散曲线反演

详细信息
    作者简介: 孙旭(1981-),男,山东电力工程咨询院有限公司岩土工程主任,主要从事岩土工程勘察、设计、测试及物探工作。Email:sunxu@sdepci.com
  • 中图分类号: P631.4

Inversion of Rayleigh wave dispersion curves based on the improved sparrow search algorithm

  • 非线性优化算法在给定的参数搜索范围内对最优解进行全局搜索,在全局搜索方面具有先天的优势,具有一定的跳出局部极值的能力。本文将一种新兴的非线性优化算法——麻雀搜索算法引入瑞利波频散曲线反演问题,针对频散曲线反演问题瑞利波频散曲线反演问题多参数、多局部极值的特点,引入自适应t分布对算法进行改进。三种理论模型的反演实验数据表明,改进的麻雀搜索算法与传统麻雀搜索算法相比具有更好的反演精度和稳定性,同时具有较好的抗随机噪声的能力。与粒子群算法和差分进化算法两种较成熟的非线性优化算法进行对比,改进的麻雀搜索算法较好地平衡了迭代前期的全局搜索和迭代后期的局部搜索,取得了与粒子群算法和差分进化算法相比更好的效果。
  • 加载中
  • [1]

    杨成林. 瑞利波法勘探原理及其应用[J]. 物探与化探, 1989, 13(6):465-468.

    [2]

    Yang C L. The principle and application of Rayleigh wave exploration method[J]. Geophysical and Geochemical Exploration, 1989, 13(6):465-468.

    [3]

    Xia J, Miller R D, Park C B. Estimation of nearsurface shear-wave velocity by inversion of Rayleigh waves[J]. Geophysics, 1999, 64(3): 691-700.

    [4]

    祁生文, 孙进忠, 何华. 瑞利波勘探的研究现状及展望[J]. 地球物理学进展, 2002, 17(4):630-662.

    [5]

    Qi S W, Sun J Z, He H. Research status and prospect of Rayleigh wave exploration[J]. Progress in Geophysics, 2002, 17(4):630-662.

    [6]

    林志平, 林俊宏, 吴柏林, 等. 浅地表地球物理技术在岩土工程中的应用与挑战[J]. 地球物理学报, 2015, 58(8):2664-2680.

    [7]

    Lin Z P, Lin J H, Wu B L, et al. Applications and challenges of near surface geophysics in geotechnical engineering[J]. Journal of Geophysics, 2015, 58(8):2664-2680.

    [8]

    崔建文. 一种改进的全局优化算法及其在面波频散曲线反演中的应用[J]. 地球物理学报, 2004, 47(3):521-527.

    [9]

    Cui J W. An improved global optimization method and its application to the inversion of surface wave dispersion curves[J]. Chinese Journal of Geophysics, 2004, 47(3):521-527.

    [10]

    蒋婵君, 周竹生, 敬荣中, 等. 遗传算法在瑞雷面波勘探中的应用[J]. 物化探计算技术, 2010, 32(5):455-513.

    [11]

    Jiang C J, Zhou Z S, Jing R Z, et al. Application of Genetic Algorithm in Rayleigh wave exploration[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2010, 32(5):455-513.

    [12]

    晋思, 邵嘉琪, 支剑丽, 等. 遗传算法在瑞利波频散曲线反演中的应用研究[J]. 人民长江, 2015, 46(3):31-33.

    [13]

    Jin S, Shao J Q, Zhi J L, et al. Application of Genetic Algorithm in inversion of Rayleigh wave dispersion curves[J]. Yangtze River, 2015, 46(3):31-33.

    [14]

    彭刘亚, 任川. 基于粒子群算法的瑞利波频散曲线反演研究[J]. 地球物理学进展, 2018, 33(4):1682-1686.

    [15]

    Peng L Y, Ren C. Inversion of Rayleigh wave dispersion curve using Particle Swarm Optimization algorithm[J]. Progress in Geophysics, 2018, 33(4): 1682-1686.

    [16]

    蔡伟, 宋先海, 袁士川, 等. 利用粒子群优化算法快速、稳定反演瑞利波频散曲线[J]. 石油地球物理勘探, 2018, 53(1):4-34.

    [17]

    Cai W, Song X H, Yuan S C, et al. Fast and stable inversion of Rayleigh wave dispersion curve using particle swarm optimization algorithm[J]. Oil Geophysical Prospecting, 2018, 53(1): 4-34.

    [18]

    张晓煜, 李向. 基于粒子群算法的地震预报方法研究[J]. 地震工程学报, 2014, 36(1):69-74.

    [19]

    Zhang X Y, Li X. Earchquake prediction method based on Particle Swarm Optimization[J]. China Earthquake Engineering Journal, 2014, 36(1): 69-74.

    [20]

    杨博, 熊章强, 张大洲, 等. 利用自适应混沌遗传粒子群算法反演瑞雷面波频散曲线[J]. 石油地球物理勘探, 2019, 54(6):1172-1227.

    [21]

    Yang B, Xiong Z Q, Zhang D Z, et al. Rayleigh surface-wave dispersion curve inversion based on adaptive chaos genetic particle swarm optimization algorithm[J]. Oil Geophysical Prospecting, 2019, 54(6): 1172-1227.

    [22]

    程飞, 刘江平, 毛茂, 等. 参数自适应差分演化算法在面波频散曲线反演中的应用[J]. 岩土工程学报, 2016, 38(1):147-154.

    [23]

    Cheng F, Liu J P, Mao M, et al. Self-adapting control parameters-based Differential Evolution Algorithm for inversion of Rayleigh wave dispersion curves[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 147-154.

    [24]

    于东凯, 宋先海, 张学强, 等. 蚱蜢算法在瑞利波频散曲线反演中的应用[J]. 石油地球物理勘探, 2019, 54(2):236-301.

    [25]

    Yu D K, Song X H, Zhang X Q, et al. Rayleigh wave dispersion inversion based on grasshopper optimization algorithm[J]. Oil Geophysical Prospecting, 2019, 54(2): 236-301.

    [26]

    王天琦, 于东凯, 蔡润. 基于改进蚁群算法在面波频散曲线反演中的应用[J]. 地震工程学报, 2020, 42(6):1523-1533.

    [27]

    Wang T Q, Yu D K, Cai R. Application of the improved ant colony algorithm in the inversion of Rayleigh wave dispersion curves[J]. China Earthquake Engineering Journal, 2020, 42(6): 1523-1533.

    [28]

    Xue J K, Shen B. A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.

  • 加载中
计量
  • 文章访问数:  484
  • PDF下载数:  50
  • 施引文献:  0
出版历程
收稿日期:  2021-09-07
修回日期:  2022-10-20
刊出日期:  2023-01-03

目录