Random noise attenuation of common offset gathers by f-x low-rank matrix approximation with nonconvex regularization
-
摘要: 随机噪声压制是地震数据处理的关键环节,而时频稀疏低秩近似算法逐道处理地震数据过程中无法利用信号的道间相干性。为此,将时频稀疏低秩近似与f-x域去噪结合,提出一种f-x域时频非凸正则化低秩矩阵近似算法。该算法对f-x域中每一单频分量作时频分解后,再对时频系数矩阵作低秩矩阵近似计算,能够利用信号和噪声的时频谱差异实现非平稳信号去噪处理。与共炮点道集和共中心点道集相比,共偏移距道集具有平缓甚至接近水平的同相轴结构,基本满足f-x域去噪的线性同相轴假设前提,建议将所提算法应用于共偏移距道集去噪处理。通过数值模拟和实际地震数据试算,证明本文方法能够有效压制随机噪声,同时保持有效信号不被损害。Abstract: Random noise attenuation played an important role in the seismic data processing. The low-rank estimation of the seismic signal in the time-frequency domain is essentially a trace-by-trace process, which cannot exploit the channel-to-channel coherence of the signal. We propose a novel random noise attenuation based on f-x low-rank matrix approximation with nonconvex regularization. Firstly, the noisy seismic data is transformed into the f-x domain by Fourier transform. Then, the time-frequency method is employed to decompose each discrete frequency slice. Finally, we estimate the sparse low-rank matrix from the obtained noisy matrix. This method enables the denoising of non-stationary signals by exploiting the spectral differences between signal and noise. Compared with the common shot and mid-point gathers, the common offset gather is characterized by flat events, which basically satisfies the assumption of linear events for f-x domain denoising, and it is suggested that the proposed algorithm should be applied to the common offset gather. Synthetic and real data sets demonstrate the performance of our proposed method in random noise suppression and preserving more useful energy.
-
Key words:
- f-x domain /
- time-frequency /
- low-rank matrix approximation /
- common offset gather /
- random noise
-
-
[1] Yilmaz ?z. Seismic data analysis[J]. Society of Exploration Geophysicists, 2001.
[2] 刘剑, 秦飞龙. 改进的小波阈值法及其在地震数据降噪处理中的应用[J]. 物探与化探, 2020, 44(4): 784.
[3] Liu J, Qin F L. The application of the improved wavelet threshold method to seismic data de-noising[J]. Geophysical and Geochemical Exploration, 2020, 44(4): 784-789.
[4] 孙永壮, 李键, 秦德文, 等. 三维边缘保持滤波方法在海上地震数据噪声压制中的应用研究——以东海某凹陷为例[J]. 物探与化探, 2021, 45(3): 692-701.
[5] Sun Y Z, Li J, Qin D W, et al. The application of 3D edge-preserving de-noising methods based on structure oriented in a complex faults block:A case study of C oilfield in East China Sea[J]. Geophysical and Geochemical Exploration, 2021, 45(3):692-701.
[6] Rasoul A, Mokhtar M, Roshandel K A, et al. Random noise attenuation of 2D seismic data based on sparse low-rank estimation of the seismic signal[J]. Computers & Geosciences, 2020, 135:104376.
[7] Sheriff R E, Geldart L P. Exploration seismology[M]. Cambridge: Cambridge University Press, 1995.
[8] Canales L L. Random noise reduction[C]// 54th Annual International Meeting. Atlanta:SEG, 1984:525-572.
[9] Chen Y K, Ma J T. Random noise attenuation by f-x empirical-mode decomposition predictive filtering[J]. Geophysics, 2014, 79(3): 81-91.
[10] Ray A, Jon C. Lateral prediction for noise attenuation by t-x and f-x techniques[J]. Geophysics, 1995, 60(6): 1887-1896.
[11] Ma?za B, Mirko V B. Random and coherent noise attenuation by empirical mode decomposition[J]. Geophysics, 2009, 74(5): 89-98.
[12] 王亚娟, 李怀良, 庹先国, 等. 一种集成经验模态分解的样本熵阈值微地震信号降噪方法[J]. 物探与化探, 2019, 43(5): 1083-1089.
[13] Wang Y J, Li H L, Tuo X G, et al. A denoising method for microseismic signal based on the ensemble empirical mode decomposition of sample entropy threshold[J]. Geophysical and Geochemical Exploration, 2019, 43(5): 1083-1089.
[14] Liu W, Duan Z Y. Seismic signal denoising using f-x variational mode decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(8): 1313-1317.
[15] Rasoul A, Roshandel K A, Mokhtar M, et al. Seismic random noise attenuation using sparse low-rank estimation of the signal in the time-frequency domain[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(5): 1612-1618.
[16] Cai H P, He Z H, Huang D J. Seismic data denoising based on mixed time-frequency methods[J]. Applied Geophysics, 2011, 8(4): 319-327.
[17] Amir N S M, Saman G, Roshandel K A, et al. Sparse time-frequency representation for seismic noise reduction using low-rank and sparse decomposition[J]. Geophysics, 2016, 81(2): 117-124.
[18] Oliveira M S, Henriques M V C, Leite F E A, et al. Seismic denoising using curvelet analysis[J]. Physica A: Statistical Mechanics and its Applications, 2012, 391(5): 2106-2110.
[19] Deng L, Yuan S Y, Wang S X. Sparse bayesian learning-based seismic denoise by using physical wavelet as basis functions[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 1993-1997.
[20] Bing P P, Liu W, Zhang Z H. A robust random noise suppression method for seismic data using sparse low-rank estimation in the time-frequency domain[J]. IEEE Access, 2020, 8: 183546-183556.
[21] Gao J J, Aaron S, Sacchi M D. Parallel matrix factorization algorithm and its application to 5D seismic reconstruction and denoising[J]. Geophysics, 2015, 80(6): 173-187.
[22] Nadia K, Sacchi M D. A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation[J]. Geophysics, 2012, 77(3): 113-122.
[23] Xu P C, Lu W K, Wang B F. Seismic interference noise attenuation by convolutional neural network based on training data generation[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(4): 741-745.
[24] Yu S W, Ma J W, Wang W L. Deep learning for denoising[J]. Geophysics, 2019, 84(6): 333-350.
[25] Zhang M, Liu Y, Chen Y K. Unsupervised seismic random noise attenuation based on deep convolutional neural network[J]. IEEE Access, 2019, 7: 179810-179822.
[26] 梁立锋, 刘秀娟, 张宏兵, 等. 超参数对GRU-CNN混合深度学习弹性阻抗反演影响研究[J]. 物探与化探, 2021, 45(1): 133-139.
[27] Liang L F, Liu X J, Zhang H B, et al. A study of the effect of hyperparameters GRU-CNN hybrid deep learning EI inversion[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 133-139.
[28] Meng F L, Fan Q Y, Li Y. Self-supervised learning for seismic data reconstruction and denoising[J]. IEEE Geoscience and Remote Sensing Letters, 2021: 1-5.
[29] Stephen A. Generative adversarial networks in seismic data processing[M]// Society of Exploration Geophysicists, 2018:1991-1995.
[30] Vicente O, Mauricio S. Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis[J]. Geophysics, 2011, 76(3): 25-32.
[31] Chen Y K, Zhou Y T, Chen W, et al. Empirical low-rank approximation for seismic noise attenuation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4696-4711.
[32] Cai J F, Candès E J, Shen Z W. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982.
[33] Ankit P, Selesnick I W. Enhanced low-rank matrix approximation[J]. IEEE Signal Processing Letters, 2016, 23(4): 493-497.
[34] Lu C Y, Zhu C M, Xu C Y, et al. Generalized singular value thresholding[J]. arXiv e-prints, 2015,(12).
[35] Rick C. Nonconvex splitting for regularized low-rank+sparse decomposition[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5810-5819.
[36] Gu S H, Zhang L, Zuo W M, et al. Weighted nuclear norm minimization with application to image denoising[C]// 2014 IEEE Conference on Computer Vision and Pattern recognition, 2014.
[37] Zhang S A, Yin P H, Xin J. Transformed schatten-1 iterative thresholding algorithms for low rank matrix completion[J]. arXiv e-prints, 2015: 1506-4444.
[38] Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
[39] Ewout V B, Michael P F. Probing the pareto frontier for basis pursuit solutions[J]. Siam J. Sci. Comput., 2008, 31(2): 890-912.
-
计量
- 文章访问数: 438
- PDF下载数: 44
- 施引文献: 0