中国自然资源航空物探遥感中心主办
地质出版社出版

主动源与被动源面波联合勘探在黄土覆盖区三维成像中的应用

邵广周, 李远林, 岳亮. 2022. 主动源与被动源面波联合勘探在黄土覆盖区三维成像中的应用. 物探与化探, 46(4): 897-903. doi: 10.11720/wtyht.2022.1546
引用本文: 邵广周, 李远林, 岳亮. 2022. 主动源与被动源面波联合勘探在黄土覆盖区三维成像中的应用. 物探与化探, 46(4): 897-903. doi: 10.11720/wtyht.2022.1546
SHAO Guang-Zhou, LI Yuan-Lin, YUE Liang. 2022. Joint application of active and passive surface wave in 3D imaging of loess covered area. Geophysical and Geochemical Exploration, 46(4): 897-903. doi: 10.11720/wtyht.2022.1546
Citation: SHAO Guang-Zhou, LI Yuan-Lin, YUE Liang. 2022. Joint application of active and passive surface wave in 3D imaging of loess covered area. Geophysical and Geochemical Exploration, 46(4): 897-903. doi: 10.11720/wtyht.2022.1546

主动源与被动源面波联合勘探在黄土覆盖区三维成像中的应用

  • 基金项目:

    国家重点研发计划项目课题(2021YFA0716902)

    国家自然科学基金项目(42174176)

    国家自然科学基金项目(41874123)

详细信息
    作者简介: 邵广周(1977-),男,副教授,研究生导师,主要从事地震勘探与地球物理信号处理方面的研究工作。Email: shao_gz@chd.edu.cn
  • 中图分类号: P

Joint application of active and passive surface wave in 3D imaging of loess covered area

  • 黄土盖层对地震波、电磁波等有很强的衰减作用,限制了地震反射波法、电磁波法等多种物探方法在黄土覆盖区的应用。针对黄土盖层厚度大、分层细的特点,采用主动源与被动源面波法联合勘探,使两种面波方法优势互补,达到准确探测黄土覆盖区地质分层的目的。研究区位于渭河盆地凤翔县郊,为典型的黄土覆盖区,黄土覆盖层厚度为80~120 m。通过对研究区主动源与被动源面波实测资料的处理,得到的二维横波速度剖面上的主要地层分层位置与实际钻孔测试结果基本一致,同时得到了研究区的三维地层结构。联合成像结果表明采用被动源与主动源面波联合勘探进行黄土覆盖区地层结构分层是可行且有效的,为黄土覆盖区地质填图提供了技术支持和有益思路。
  • 加载中
  • [1]

    王振东. 双源面波勘探构想[J]. 中国地质, 1998, 25(4):47-48.

    [2]

    Wang Z D. Concept of dual source surface wave exploration[J]. Geology in China, 1998, 25(4):47-48.

    [3]

    Park C B, Miller R D, Ryden N, et al. Combined use of active and passive surface waves[J]. Journal of Environmental and Engineering Geophysics, 2005, 10(3):323-334.

    [4]

    Park C B, Miller R D. Roadside passive multichannel analysis of surface waves (MASW)[J]. Journal of Environmental and Engineering Geophysics, 2008, 13(1):1-11.

    [5]

    Zor E, Ozalaybey S, Karaaslan A, et al. Shear wave velocity structure of the Izmit Bay area (Turkey) estimated from active-passive array surface wave and single-station microtremor methods[J]. Geophysical Journal International, 2010, 182(3):1603-1618.

    [6]

    李凯. 面波勘探技术在工程勘察中的应用进展[J]. 工程地球物理学报, 2011, 8(1):97-104.

    [7]

    Li K. Progress of surface wave exploration technology in engineering exploration[J]. Chinese Journal of Engineering Geophysics, 2011, 8(1):97-104.

    [8]

    Foti S, Parolai S, Albarello D, et al. Application of surface-wave methods for seismic site characterization[J]. Surveys in Geophysics, 2011, 32(6):777-825.

    [9]

    Foti S, Parolai S, Bergamo P, et al. Surface wave surveys for seismic site characterization of accelerometric stations in ITACA[J]. Bulletin of Earthquake Engineering, 2011, 9(6):1797-1820.

    [10]

    张维, 何正勤, 胡刚, 等. 用面波联合勘探技术探测浅部速度结构[J]. 地球物理学进展, 2013, 28(4):2199-2206.

    [11]

    Zhang W, He Z Q, Hu G, et al. Detection of the shallow velocity structure with surface wave prospection method[J]. Progress in Geophysics, 2013, 28(4):2199-2206.

    [12]

    刘庆华, 鲁来玉, 王凯明. 主动源和被动源面波浅勘方法综述[J]. 地球物理学进展, 2015, 30(6):2906-2922.

    [13]

    Liu Q H, Lu L Y, Wang K M. Review on the active and passive surface wave exploration method for the near-surface structure[J]. Progress in Geophysics, 2015, 30(6):2906-2922.

    [14]

    单波, 王延辉, 侯寿贵. 多道瞬态面波与天然源面波勘探方法在填方区的综合应用[J]. 工程勘察, 2017, 45(s2):311-315.

    [15]

    Shan B, Wang Y H, Hou S G. Comprehensive application of surface wave and micro-exploration method in filling area[J]. Geotechnical Investigation and Surveying, 2017, 45(s2):311-315.

    [16]

    Feng C, Xia J H, Shen C, et al. Imposing active sources during high-frequency passive surface-wave measurement[J]. Engineering, 2018, 4(5):225-242.

    [17]

    丰赟, 沙椿. 面波联合勘探在深厚覆盖层地区应用实例分析[J]. 物探与化探, 2018, 42(2):392-397.

    [18]

    Feng Y, Sha C. Combined use active and passive surface waves in the deep overburden area[J]. Geophysical and Geochemical Exploration, 2018, 42(2):392-397.

    [19]

    邵广周, 李庆春. 联合应用τ-p变换法和相移法提取面波频散曲线[J]. 石油地球物理勘探, 2010, 45(6):836-840.

    [20]

    Shao G Z, Li Q C. Joint application of τ-p and phase-shift stacking method to extract ground wave dispersion curve[J]. Oil Geophysical Prospecting, 2010, 45(6):836-840.

    [21]

    Ekstrom G, Abers G A, Webb S C. Determination of surface-wave phase velocities across USArray from noise and Aki’s spectral formulation[J]. Geophysical Research Letters, 2009, 36(18):64-66.

    [22]

    Tasi V C, Moschetti M P. An explicit relationship between time-domain noise correlation and spatial autocorrelation (SPAC) results[J]. Geophysical Journal International, 2010, 182(1): 454-460.

    [23]

    邵广周, 岳亮, 李远林, 等. 被动源瑞利波两道法提取频散曲线的质量控制方法[J]. 物探与化探, 2019, 43(6):1297-1308.

    [24]

    Shao G Z, Yue L, Li Y L, et al. A study of quality control of extracting dispersion curves by two-channel passive Rayleigh waves[J]. Geophysical and Geochemical Exploration, 2019, 43(6):1297-1308.

  • 加载中
计量
  • 文章访问数:  681
  • PDF下载数:  97
  • 施引文献:  0
出版历程
收稿日期:  2021-10-14
修回日期:  2022-08-20
刊出日期:  2022-08-17

目录