中国自然资源航空物探遥感中心主办
地质出版社出版

基于LSTM循环神经网络的大地电磁方波噪声抑制

杨凯, 唐卫东, 刘诚, 贺景龙, 姚川. 2022. 基于LSTM循环神经网络的大地电磁方波噪声抑制. 物探与化探, 46(4): 925-933. doi: 10.11720/wtyht.2022.1572
引用本文: 杨凯, 唐卫东, 刘诚, 贺景龙, 姚川. 2022. 基于LSTM循环神经网络的大地电磁方波噪声抑制. 物探与化探, 46(4): 925-933. doi: 10.11720/wtyht.2022.1572
YANG Kai, TANG Wei-Dong, LIU Cheng, HE Jing-Long, YAO Chuan. 2022. Suppression of magnetotelluric square wave noise based on a LSTM recurrent neural network. Geophysical and Geochemical Exploration, 46(4): 925-933. doi: 10.11720/wtyht.2022.1572
Citation: YANG Kai, TANG Wei-Dong, LIU Cheng, HE Jing-Long, YAO Chuan. 2022. Suppression of magnetotelluric square wave noise based on a LSTM recurrent neural network. Geophysical and Geochemical Exploration, 46(4): 925-933. doi: 10.11720/wtyht.2022.1572

基于LSTM循环神经网络的大地电磁方波噪声抑制

  • 基金项目:

    中国地质调查局地质调查项目“北山地区月牙山—合黎山一带萤石铜钼矿调查评价”(DD20211552)

    “秦岭地区金银矿资源勘查”(DD20208008)

    “陕西旬阳—镇坪地区铅锌矿产地质调查”(DD20208009)

详细信息
    作者简介: 杨凯(1991-),男,在读硕士,工程师,主要从事物探数据处理工作。Email: yangkaicgs@163.com
  • 中图分类号: P631

Suppression of magnetotelluric square wave noise based on a LSTM recurrent neural network

  • 去噪是大地电磁数据处理的重要一环。为了丰富和发展大地电磁时间序列去噪方法,将循环神经网络中的LSTM网络引入大地电磁时间序列方波噪声处理中,将实测无人文干扰的大地电磁时间序列叠加模拟方波噪声作为网络输入,将无噪原始时间序列作为网络的目标输出,训练了1 500次epoch后,网络从仿真含噪信号提取的时间序列与原始时间序列的归一化互相关系数高达0.971 8,说明网络很好地学习了无噪大地电磁时间序列的特征。通过实测含方波噪声信号的去噪试验,表明了本文方法可以有效压制方波噪声干扰,改善阻抗估计质量,为深度学习在大地电磁时间序列处理的应用提供了新思路。
  • 加载中
  • [1]

    孙洁, 晋光文. 大地电磁测深资料的噪声干扰[J]. 物探与化探, 2000, 24(2):119-127.

    [2]

    Sun J, Jin G W. Noise interference of magnetotelluric data[J]. Geophysical and Ceochemical Exploration, 2000, 24(2):119-127.

    [3]

    汤井田, 徐志敏, 肖晓, 等. 庐枞矿集区大地电磁测深强噪声的影响规律[J]. 地球物理学报, 2012, 55(12):4147-4159.

    [4]

    Tang J T, Xu Z M, Xiao X, et al. Effect rules of strong noise on magnetotelluric (MT) sounding in Luzong ore cluster area[J]. Chinese Journal of Geophysics, 2012, 55(12):4147-4159.

    [5]

    严家斌. 大地电磁信号处理理论及方法研究[D]. 长沙: 中南大学, 2003.

    [6]

    Yan J B. The study on theory and method of magnetotelluric signal processing[D]. Changsha: Central South University, 2003.

    [7]

    蔡建华, 汤井田, 王先春. 基于经验模态分解的大地电磁资料人文噪声处理[J]. 中南大学学报:自然科学版, 2011, 42(6):1786-1790.

    [8]

    Cai J H, Tang J T, Wang X C. Human noise elimination for magnetotelluric data based on empirical mode decomposition[J]. Journal of Central South University:Science and Technology, 2011, 42(6):1786-1790.

    [9]

    汤井田, 李晋, 肖晓, 等. 数学形态滤波与大地电磁噪声压制[J]. 地球物理学报, 2012, 55(5):1784-1793.

    [10]

    Tang J T, Li J, Xiao X, et al. Mathematical morphology filtering and noise suppression of magnetotelluric sounding data[J]. Chinese Journal of Geophysics, 2012, 55(5):1784-1793.

    [11]

    汤井田, 刘祥, 周聪. 仿真方波的大地电磁远参考去噪研究[J]. 物探化探计算技术, 2014, 36(5):513-520.

    [12]

    Tang J T, Liu X, Zhou C. Simulation of square waveform de-noising research of magnetotelluric with a remote reference[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014, 36(5):513-520.

    [13]

    王辉, 魏文博, 金胜, 等. 基于同步大地电磁时间序列依赖关系的噪声处理[J]. 地球物理学报, 2014, 57(2):531-545.

    [14]

    Wang H, Wei W B, Jin S, et al. Removal of magnetotelluric noise based on synchronous time series relationship[J]. Chinese Journal of Geophysics, 2014, 57(2):531-545.

    [15]

    汤井田, 李广, 周聪, 等. 基于字典学习的音频大地电磁数据处理[J]. 地球物理学报, 2018, 61(9):3835-3850.

    [16]

    Tang J T, Li G, Zhou C, et al. Denoising AMT data based on dictionary learning[J]. Chinese Journal of Geophysics, 2018, 61(9):3835-3850.

    [17]

    李晋, 张贤, 蔡锦. 利用变分模态分解(VMD)和匹配追踪(MP)联合压制音频大地电磁(AMT)强干扰[J]. 地球物理学报, 2019, 62(10):3866-3884.

    [18]

    Li J, Zhang X, Cai J. Suppression of strong interference for AMT using VMD and MP[J]. Chinese Journal of Geophysics, 2019, 62(10):3866-3884.

    [19]

    王昊, 严加永, 付光明, 等. 深度学习在地球物理中的应用现状与前景[J]. 地球物理学进展, 2020, 35(2):642-655.

    [20]

    Wang H, Yan J Y, Fu G M, et al. Current status and application prospect of deep learning in geophysics[J]. Progress in Geophysics, 2020, 35(2):642-655.

    [21]

    李瑞友, 张淮清, 吴昭. 基于在线惯序极限学习机的瞬变电磁非线性反演[J]. 物探与化探, 2021, 45(4):1048-1054.

    [22]

    Li R Y, Zhang H Q, Wu Z. Online sequential extreme learning machine for transient electromagnetic nonlinear inversion[J]. Geophysical and Geochemical Exploration, 2021, 45(4):1048-1054.

    [23]

    王逸宸, 柳林涛, 许厚泽. 基于卷积神经网络识别重力异常体[J]. 物探与化探, 2020, 44(2):394-400.

    [24]

    Wang Y C, Liu L T, Xu H Z. The identification of gravity anomaly body based on the convolutional neural network[J]. Geophysical and Geochemical Exploration, 2020, 44(2):394-400.

    [25]

    韩卫雪, 周亚同, 池越. 基于深度学习卷积神经网络的地震数据随机噪声去除[J]. 石油物探, 2018, 57(6):862-869.

    [26]

    Han W X, Zhou Y T, Chi Y. Deep learning convolutional neural networks for random noise attenuation in seismic data[J]. Geophysical Prospecting for Petroleum, 2018, 57(6):862-869.

    [27]

    王鹤, 蒋欢, 王亮, 等. 大地电磁人工神经网络反演[J]. 中南大学学报:自然科学版, 2015, 46(5):1707-1714.

    [28]

    Wang H, Jiang H, Wang L, et al. Magnetotelluric inversion using artificial neural network[J]. Journal of Central South University:Science and Technology, 2015, 46(5):1707-1714.

    [29]

    赵文举, 刘云祥, 陶德强, 等. BP神经网络磁性体顶面埋深预测方法[J]. 石油地球物理勘探, 2020, 55(5):1139-1148.

    [30]

    Zhao W J, Liu Y X, Tao D Q, et al. Prediction of magnetic body top based on BP neural network[J]. Oil Geophysical Prospecting, 2020, 55(5):1139-1148.

    [31]

    Manoj C, Nagarajan N. The application of artificial neural networks to magnetotelluric time-series analysis[J]. Geophysical Journal International, 2003, 152(2):409-423.

    [32]

    许滔滔, 王中兴, 肖卓伟, 等. 基于LSTM 循环神经网络的大地电磁工频干扰压制[J]. 地球物理学进展, 2020, 35(5):2016-2022.

    [33]

    Xu T T, Wang Z X, Xiao Z W, et al. Magnetotelluric power frequency interference suppression based on LSTM recurrent neural network[J]. Progress in Geophysics, 2020, 35(5):2016-2022.

    [34]

    王斯昊, 何兰芳. 基于LSTM循环神经网络的MT时间序列去噪可行性分析[C]// 中国地球物理学会地球物理技术委员会第九届学术会议—全域地球物理探测与智能感知学术研讨会会议摘要集, 2021.

    [35]

    Wang S H, He N F. Feasibility analysis of the LSTM based denoising to MT time series[C]// The 9th Conference of Geophysical Technology,Chinese Geophysical Society—Abstracts of Symposium on Full-Space Geophysical Exploration and Intelligent Sensing, 2021.

    [36]

    汪凯翔, 黄清华, 吴思弘. 长短时记忆神经网络在地电场数据处理中的应用[J]. 地球物理学报, 2020, 63(8):3015-3024.

    [37]

    Wang K X, Huang Q H, Wu S H. Application of long short-term memory neural network in geoelectric field data processing[J]. Chinese Journal of Geophysics, 2020, 63(8):3015-3024.

    [38]

    Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.

    [39]

    Kingma D, Ba J. Adam:A method for stochastic optimization[J]. Computer Science, 2014(12).doi: 10.48550/arXiv.1412.6980.

    [40]

    Uhm J, Heo J, Min D J, et al. Imaging strategies to interpret 3-D noisy audio-magnetotelluric data acquired in Gyeongju South Korea:data processing and inversion[J]. Geophysical Journal International, 2021, 225(2):744-758.

    [41]

    Yang Y, Wang X, Han J, et al. Magnetotelluric transfer function distortion assessment using Nyquist diagrams[J]. Journal of Applied Geophysics, 2019, 160:218-228.

    [42]

    王书明, 王家映. 大地电磁信号统计特征分析[J]. 地震学报, 2004, 26(6):669-674.

    [43]

    Wang S M, Wang J Y. Analysis on statistic characteristics of Magnetotelluric signal[J]. Acta Seismologica Sinica, 2004, 26(6):669-674.

    [44]

    Neukirch M, Garcia X. Nonstationary magnetotelluric data processing with instantaneous parameter[J]. Journal of Geophysical Research:Solid Earth, 2014, 119(3):1634-1654.

  • 加载中
计量
  • 文章访问数:  826
  • PDF下载数:  110
  • 施引文献:  0
出版历程
收稿日期:  2021-10-25
修回日期:  2022-08-20
刊出日期:  2022-08-17

目录