中国自然资源航空物探遥感中心主办
地质出版社出版

井间超高密度电法探测基桩的模拟及应用

柴伦炜. 2022. 井间超高密度电法探测基桩的模拟及应用. 物探与化探, 46(5): 1283-1288. doi: 10.11720/wtyht.2022.1580
引用本文: 柴伦炜. 2022. 井间超高密度电法探测基桩的模拟及应用. 物探与化探, 46(5): 1283-1288. doi: 10.11720/wtyht.2022.1580
CHAI Lun-Wei. 2022. A simulation and application of cross-well ultra-high-density resistivity imaging in the detection of foundation piles. Geophysical and Geochemical Exploration, 46(5): 1283-1288. doi: 10.11720/wtyht.2022.1580
Citation: CHAI Lun-Wei. 2022. A simulation and application of cross-well ultra-high-density resistivity imaging in the detection of foundation piles. Geophysical and Geochemical Exploration, 46(5): 1283-1288. doi: 10.11720/wtyht.2022.1580

井间超高密度电法探测基桩的模拟及应用

  • 基金项目:

    中铁第一勘察设计院集团有限公司科研项目(院科16-16)

详细信息
    作者简介: 柴伦炜(1990-),男,硕士,工程师,毕业于吉林大学地球探测与信息技术专业,注册土木工程师(岩土),注册一级建造师(市政),主要从事岩土工程勘察与设计研究工作。Email:chailw2309@126.com
  • 中图分类号: P631.1;U452

A simulation and application of cross-well ultra-high-density resistivity imaging in the detection of foundation piles

  • 为了提高基桩检测水平,减少重大安全隐患,基于2.5维井间超高密度电阻率的正反演数值模拟,构建了单桩、长短桩和群桩3种地电模型,分析其响应特征及规律;鉴于基桩检测环境的复杂性,结合两则基桩埋深探测的实例,进一步阐述了该方法的应用特点和效果。研究结果表明:井间超高密度电阻率成像技术应用于桩埋深检测,具有精度高、施工灵活方便等优点,可以大规模检测基桩的长度,而不需要1个检测孔对应1根基桩,极大提高了基桩埋深的探测水平。
  • 加载中
  • [1]

    龚晓南. 桩基工程手册. 第2版[M]. 北京: 中国建筑工业出版社, 2016.

    [2]

    Gong X N. Handbook of pile foundation engineering. 2nd Edition[M]. Beijing: China Construction Industry Press, 2016.

    [3]

    赵振东, 杉本三千. 桩基低应变完整性检测的分析研究[J]. 地震工程与工程振动, 1995, 15(4):104-112.

    [4]

    Zhao Z D, Sugimoto S Q. Analysis and research on low strain integrity testing of pile foundation[J]. Earthquake Engineering and Engineering Vibration, 1995, 15(4): 104-112.

    [5]

    蒋万里, 朱国甫, 张杰. 单桩承载力的一种直接动测法[J]. 岩土力学, 2020, 41(10):3500-3508.

    [6]

    Jiang W L, Zhu G F, Zhang J. A direct dynamic measurement method of single pile bearing capacity[J]. Rock and Soil Mecha-nics, 2020, 41(10): 3500-3508.

    [7]

    刘荻, 李贺. 物探检测方法在石拱桥病害整治工程中的应用[J]. 物探与化探, 2012, 20(5):119-123.

    [8]

    Liu D, Li H. Application of geophysical detection method in stone arch bridge disease remediation project[J]. Geophysical and Geochemical Exploration, 2012, 20(5): 119-123.

    [9]

    李望明, 吴述来, 易强. 利用管波信息进行定量解释的方法[J]. 物探与化探, 2017, 41(2): 311-315.

    [10]

    Li W M, Wu S L, Yi Q. Methods for quantitative interpretation using tube wave information[J]. Geophysical and Geochemical Exploration, 2017, 41(2): 311-315.

    [11]

    陈亚东, 陈思, 于艳. 长短桩组合桩基宏细观工作性状研究[J]. 地下空间与工程学报, 2015, 11(3):700-705.

    [12]

    Chen Y D, Chen S, Yu Y. Study on the macro and meso working behaviors of the combined pile foundation with long and short piles[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(3): 700-705.

    [13]

    Zhe J, Greenhalgh S, Marescot L. Multichannel, full waveform and flexible electrode combination resistivity-imaging system[J]. Geophysics, 2007, 72(2): 592-603.

    [14]

    柴伦炜, 汤国毅, 王国群, 等. 超高密度跨孔电阻率法成像在灌注桩埋深探测中的应用[J]. 工程地球物理学报, 2021, 18(2):252-256.

    [15]

    Chai L W, Tang G Y, Wang G Q, et al. The application of ultra-high-density cross-hole resistivity imaging in the buried depth detection of cast-in-place piles[J]. Journal of Engineering Geophysics, 2021, 18(2): 252-256.

    [16]

    Zhe J, Greenhalgh S A. A new kinematic method for mapping seismic reflectors[J]. Geophysics, 2010, 64(5): 1594-1602.

    [17]

    Zhe J, Greenhalgh S A. Prestack multicomponent migration[J]. Geophysics, 1997, 62(2): 598-613.

    [18]

    苏宝, 刘晓丽, 卫晓波, 等. 井间超高密度电阻率法溶洞探测研究[J]. 物探与化探, 2021, 45(5):1354-1358.

    [19]

    Su B, Liu X L, Wei X B, et al. Detection of caves by ultra-high density resistivity method between wells[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1354-1358.

    [20]

    张敬一, 陈智芳. 旁孔透射波法确定桩底深度方法对比研究[J]. 地下空间与工程学报, 2018, 14(5):1331-1337.

    [21]

    Zhang J Y, Chen Z F. Comparative study on the method of determining the depth of pile bottom by side hole transmission wave method[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5): 1331-1337.

    [22]

    胡富彭, 欧元超, 付茂如. 不同充填介质下的溶洞跨孔电阻率CT探查数值模拟[J]. 中国岩溶, 2019, 38(5):766-773.

    [23]

    Hu F P, Ou C C, Fu M R. Numerical simulation of CT exploration of karst cave cross-hole resistivity under different filling media[J]. China Karst, 2019, 38(5): 766-773.

    [24]

    周峰, 屈伟, 陈杰. 岩溶地区端承桩复合桩基的工程实践[J]. 地下空间与工程学报, 2016, 12(2):489-495.

    [25]

    Zhou F, Qu W, Chen J. Engineering practice of end-bearing pile composite pile foundation in karst area[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(2): 489-495.

    [26]

    曹权, 项伟, 贾海梁, 等. 跨孔超高密度电阻率法在球状风化花岗岩体探测中的应用[J]. 工程地质学报, 2013(5):60-65.

    [27]

    Cao Q, Xiang W, Jia H L, et al. Application of cross-hole ultra-high density resistivity method in the detection of spherical weathered granite bodies[J]. Journal of Engineering Geology, 2013(5): 60-65.

    [28]

    岳建华, 刘志新. 井—地三维电阻率成像技术[J]. 地球物理学进展, 2005(2):407-411.

    [29]

    Yue J H, Liu Z X. Well-ground three-dimensional resistivity imaging technology[J]. Progress in Geophysics, 2005(2): 407-411.

    [30]

    巩天才, 杨强, 黄木田, 等. 连拱隧道施工工序对既有建筑桩基的影响分析[J]. 地下空间与工程学报, 2019, 15(4):1172-1179.

    [31]

    Gong T C, Yang Q, Huang M T, et al. Analysis of the influence of the construction process of the double-arch tunnel on the pile foundation of the existing building[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(4): 1172-1179.

    [32]

    张文俊, 李术才, 苏茂鑫, 等. 基于井间电阻率成像的城市地铁溶洞探测方法[J]. 山东大学学报:工学版, 2014, 44(3):75-82.

    [33]

    Zhang W J, Li S C, Su M X, et al. Urban subway cave detection method based on cross-well resistivity imaging[J]. Journal of Shandong University:Engineering Science Edition, 2014, 44(3): 75-82.

    [34]

    黄新民. 盾构隧道下穿既有桥桩工程的保护方案研究[J]. 地下空间与工程学报, 2012, 8(3):557-561,636.

    [35]

    Huang X M. Study on the protection scheme of the shield tunnel underneath the existing bridge piles[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(3): 557-561,636.

  • 加载中
计量
  • 文章访问数:  299
  • PDF下载数:  38
  • 施引文献:  0
出版历程
收稿日期:  2021-10-25
修回日期:  2022-10-20
刊出日期:  2023-01-03

目录