中国自然资源航空物探遥感中心主办
地质出版社出版

海上地震勘探斜缆采集中鬼波产生机理及压制效果分析

马德志, 王炜, 金明霞, 王海昆, 张明强. 2022. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析. 物探与化探, 46(1): 175-181. doi: 10.11720/wtyht.2022.2337
引用本文: 马德志, 王炜, 金明霞, 王海昆, 张明强. 2022. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析. 物探与化探, 46(1): 175-181. doi: 10.11720/wtyht.2022.2337
MA De-Zhi, WANG Wei, JIN Ming-Xia, WANG Hai-Kun, ZHANG Ming-Qiang. 2022. Generation mechanism of ghost wave in marine seismic exploration and ghost wave attenuation from marine seismic data. Geophysical and Geochemical Exploration, 46(1): 175-181. doi: 10.11720/wtyht.2022.2337
Citation: MA De-Zhi, WANG Wei, JIN Ming-Xia, WANG Hai-Kun, ZHANG Ming-Qiang. 2022. Generation mechanism of ghost wave in marine seismic exploration and ghost wave attenuation from marine seismic data. Geophysical and Geochemical Exploration, 46(1): 175-181. doi: 10.11720/wtyht.2022.2337

海上地震勘探斜缆采集中鬼波产生机理及压制效果分析

  • 基金项目:

    中国海洋石油总公司科研项目(WTB21YF002)

详细信息
    作者简介: 马徳志(1987-),男,汉族,2009年毕业于中国地质大学(武汉)地球物理学专业,现为中海油田服务股份有限公司物探事业部物探研究院数据处理工程师,主要从事地震资料质量控制及数据处理工作。Email: madezhi@foxmail.com
  • 中图分类号: P631

Generation mechanism of ghost wave in marine seismic exploration and ghost wave attenuation from marine seismic data

  • 在海洋油气勘探中,为了准确获取勘探目的层高精度、高分辨率的反射信息,实现更加细腻的成像,海洋地震宽频采集及处理技术近年来得到了极大的创新和发展。本文研究了海洋地震勘探中鬼波的产生机理、鬼波的分类和特性及其在实际地震资料中的表现形式。采用频率域高精度斜缆Radon变换作为主要处理方法,对某直斜缆宽频数据进行了鬼波的衰减,经过鬼波压制处理后,地震资料的震源鬼波和电缆鬼波都得到了极大程度的衰减,陷波点能量显著增强。鬼波压制处理既拓宽了地震资料的低频成分,也拓宽了地震资料的高频成分,尤其低频成分能量得到了显著的增强,该方法在实际海洋地震资料的应用中取得了良好的应用效果。
  • 加载中
  • [1]

    陆敬安, 于荣萍, 伍忠良. 海洋地震勘探直达波、鬼波综合效应分析[C]//长春:中国地球物理学会第二十一届年会, 2005:324-324.

    [2]

    Lu J A, Yu R P, Wu Z L. Comprehensive effect analysis of direct wave and ghost wave in marine seismic exploration[C]//Changchun:The 21st Annual Meeting of Chinese Geophysical Society, 2005:324-324.

    [3]

    金明霞, 宋鑫, 易淑昌, 等. 海洋地震变深度电缆采集数据的频谱分析及消除鬼波研究[J]. 物探与化探, 2018,42(3):528-536.

    [4]

    Jin M X, Song X, Yi S C, et al. Spectrum analysis and ghost wave elimination on marin seismic variable depth cable acquisition data[J]. Geophysical and Geochemical Exploration, 2018,42(3):528-536.

    [5]

    张军华, 张在金, 张彬彬, 等. 地震低频信号对关键处理环节的影响分析[J]. 石油地球物理勘探, 2016,51(1):54-62.

    [6]

    Zhang J H, Zhang Z J, Zhang B B, et al. Analysis of the influence of low frequency seismic signal on key processing steps[J]. Oil Geophysical Prospecting, 2016,51(1):54-62.

    [7]

    姜丹, 蒲晓东, 麻志国, 等. 子波法去鬼波在墨西哥湾的应用[J]. 物探与化探, 2017,41(5):914-918.

    [8]

    Jiang D, Pu X D, Ma Z G, et al. The application of wavelet method to eliminating ghost wave in Gulf of Mexico[J]. Geophysical and Geochemical Exploration, 2017,41(5):914-918.

    [9]

    陆敬安, 伍忠良, 曾宪军. 海洋地震勘探中地震波、鬼波综合效应分析与应用[J]. 海洋技术, 2006,25(4):76-78,98.

    [10]

    Lu J A, Wu Z L, Zeng X J. Analysis and application of comprehensive effect of seismic wave and ghost wave in marine seismic exploration[J]. Marine Technology, 2006,25(4):76-78,98.

    [11]

    顾元, 文鹏飞, 张宝金, 等. 水平缆地震数据的鬼波压制方法及其应用[J]. 地球物理学进展, 2017,32(4):1764-1772.

    [12]

    Gu Y, Wen P F, Zhang B J, et al. Ghost wave suppression method and its application on horizontal cable seismic data[J]. Progress in Geophysics, 2017,32(4):1764-1772.

    [13]

    Sonneland L, Berg L E, Eidsvig P, et al. 2-D deghosting using vertical receiver arrays[C]//SEG Technical Program Expanded Abstracts, 1986:516-519.

    [14]

    Weglein A B, Shaw S A, Matson K H, et al. New approaches to deghosting towed-streamer and ocean-bottom pressure measurements[C]//SEG Technical Program Expanded Abstracts, 2002:2114-2117.

    [15]

    Soubaras R. Variable-depth streamer:Deep towing and efficient deghosting for extended band-width[R].SEG/ EAGE Research Workshop, 2010.

    [16]

    Soubaras R, Dowle R. Variable-depth streamer—A broadband marine solution[J]. First Break, 2010,28(12):89-96.

    [17]

    Soubaras R. Pre-stack deghosting for variable-depth streamer data[C]//SEG Technical Program Expanded Abstracts, 2012:1-5.

    [18]

    Wang P, Suryadeep R, Can P, et al. Premigration deghosting for marine streamer data using a bootstrap approach in tau-p domain[C]//SEG Technical Program Expanded Abstracts, 2013:4221-4225.

    [19]

    Bleistein N, Cohen J K, John W S J. Mathematics of multi-dimensional seismic imaging,migration and inversion[M]. New York:Springer Verlag, 1996.

    [20]

    Weglein A B, Araujo F V, Carvalho P M, et al. Inverse scattering series and seismic exploration[J]. Inverse Problems, 2003,19(6):R27-R83.

    [21]

    Matson K H. The relationship between scattering theory and the primaries and multiples of reflection seismic data[J]. Seismic Exploration, 1996,5(1):63-78.

    [22]

    Weglein A B. Multiple attenuation:An overview of recent advances and the road ahead (1999)[J]. The Leading Edge, 1999,18(1):40-44.

    [23]

    王芳芳, 李景叶, 陈小宏. 基于逆散射级数法的鬼波压制方法[J]. 地球物理学报, 2013,56(5):1628-1636.

    [24]

    Wang F F, Li J Y, Chen X H, et al. Ghost wave suppression method based on inverse scattering series method[J]. Journal of Geophysics, 2013,56(5):1628-1636.

    [25]

    Song J G, Gong Y L, Li S. High-resolution frequency-domain Radon transform and variable-depth streamer data deghosting[J]. Applied Geophysics, 2015,12(4):564-572.

    [26]

    李慧龙, 王征, 宋鑫, 等. 深拖平缆采集资料中鬼波衰减方法探讨[J]. 物探与化探, 2019,43(1):176-182.

    [27]

    Li H L, Wang Z, Song X, et al. The application of broadband processing technology to deep towing flat streamer data[J]. Geophysical and Geochemical Exploration, 2019,43(1):176-182.

  • 加载中
计量
  • 文章访问数:  1618
  • PDF下载数:  115
  • 施引文献:  0
出版历程
收稿日期:  2020-11-01
修回日期:  2022-02-20
刊出日期:  2022-02-25

目录