中国自然资源航空物探遥感中心主办
地质出版社出版

基于机器学习松辽盆地大地热流计算与特征分析

宫明旭, 白利舸, 曾昭发, 吴丰收. 2023. 基于机器学习松辽盆地大地热流计算与特征分析. 物探与化探, 47(3): 766-774. doi: 10.11720/wtyht.2023.1241
引用本文: 宫明旭, 白利舸, 曾昭发, 吴丰收. 2023. 基于机器学习松辽盆地大地热流计算与特征分析. 物探与化探, 47(3): 766-774. doi: 10.11720/wtyht.2023.1241
GONG Ming-Xu, BAI Li-Ge, ZENG Zhao-Fa, WU Feng-Shou. 2023. Machine learning-based calculation and characteristic analysis of terrestrial heat flow in the Songliao Basin. Geophysical and Geochemical Exploration, 47(3): 766-774. doi: 10.11720/wtyht.2023.1241
Citation: GONG Ming-Xu, BAI Li-Ge, ZENG Zhao-Fa, WU Feng-Shou. 2023. Machine learning-based calculation and characteristic analysis of terrestrial heat flow in the Songliao Basin. Geophysical and Geochemical Exploration, 47(3): 766-774. doi: 10.11720/wtyht.2023.1241

基于机器学习松辽盆地大地热流计算与特征分析

  • 基金项目:

    国家自然科学基金项目“深部超临界热储流体—岩石综合电性特征与电磁响应研究”(42074119)

详细信息
    作者简介: 宫明旭(1993-),男,硕士研究生,从事地球物理探测与评价的研究工作。Email:1209686360@qq.com
    通讯作者: 曾昭发(1966-),男,广西全州人,教授,博士生导师,博士,研究方向为应用地球物理。Email:zengzf@jlu.edu.cn
  • 中图分类号: P631.4

Machine learning-based calculation and characteristic analysis of terrestrial heat flow in the Songliao Basin

More Information
    Corresponding author: ZENG Zhao-Fa
  • 大地热流是地球内部热量在地表的直接显示,对地热资源评估具有极高的参考价值,由于传统利用钻井技术的热流测定方法既昂贵又困难,至今松辽盆地仍未能实现高质量、高分辨率的大地热流测量。机器学习是一种用于数据分析的技术,它可以识别数据中的模式并将其用于自动计算未知数据。本文引入机器学习方法来计算区域大地热流。这项研究基于全球大地热流实测数据与地质构造数据,首先采用了Kriging回归算法和机器学习算法计算某已知热流分布区域的大地热流,并计算了均方根误差和相关系数,表明机器学习算法能获得误差更小、相关度更高的结果。随后使用机器学习方法计算了松辽盆地的大地热流值。计算结果显示盆地中部大地热流最高,以大庆、松原之间的区域为中心呈环状向外逐渐变低,中心区域大地热流超过80 mV/m2。该结果与区域实测地温梯度测量结果具有良好一致性,为进一步分析松辽盆地地热资源分布规律提供参考。最后,利用Sobol方法进行地质特征灵敏度分析,量化各参数的影响。本文的研究表明机器学习方法在大地热流值计算方面具有较高的研究和应用价值。
  • 加载中
  • 加载中
计量
  • 文章访问数:  30
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2022-05-20
修回日期:  2023-04-07
刊出日期:  2023-07-05

目录