Geochemical characteristics and Cr metallogenic potential evaluation of the middle section of the northern margin of the Qaidam Basin
-
摘要: 本文在提取柴北缘中段不同比例尺(1:5万水系沉积物测量、1:2.5万地球化学测量)59 238个原始数据的基础上,进行了数理指标统计和多元统计的叠加分析,以期从区域角度寻找元素组合关系以及判断主成矿元素,为后续矿产工作提供基础支撑。根据统计显示,该区Au、W、Cr 3种元素各项数理指标显示了较强的成矿潜力,结合多元统计分析及区内已有的成矿事实,认为该区除了构造蚀变岩型、热液型金矿的产出外,寻找镁质超基性岩有关的铬矿潜力巨大。考虑到局部Cr整体背景值较高等因素,以传统X+2σ(129×10-6)或累积频率85%(142.9×10-6)的异常下限划分方法不能满足该区局部异常的圈定需求,故引用1/4浓幅分位值(234×10-6)提高异常下限,不仅圈定出浓集中心具有明显带状分布的异常多处,而且剔除了多数弱小异常。综合地、物、化成果,推断出进一步寻找铬矿的有利地段,划分出了4个成矿有利地段及5个找矿靶区。
-
关键词:
- 1:2.5万地球化学测量 /
- Cr /
- 数理统计分析 /
- 成矿潜力 /
- 柴北缘中段
Abstract: This study extracted 59238 pieces of original data on different scales (1:50000 stream sediment surveys and 1:25000 geochemical surveys) of the middle section of the northern margin of the Qaidam Basin. Based on these data, this study conducted the superposition analysis of mathematical index statistics and multivariate statistics, aiming to discover the element association relationship and determine the major metallogenic elements in the region and provide basic support for subsequent mineral work. According to the statistics, the mathematical indexes of Au, W, and Cr in the study area show great metallogenic potential. Combined with the multivariate statistical analysis and existent metallogenic facts, the authors of this study believed that the study area has the great potential for the prospecting of chromium deposits associated with ultramafic rocks besides tectonic altered rock-type and hydrothermal gold deposits. Owing to the relatively high overall background value of local chromium (Cr) element, the traditional method using X+2σ (129×10-6) or the cumulative frequency 85% (142.9×10-6) used to delineate the anomaly threshold cannot meet the requirement for delineating local anomalies in the study area. Therefore, this study improved the anomaly threshold using the 1/4 concentration grading value (234×10-6). As a result, many anomalies exhibiting significant zonal distribution in the concentration center were delineated, and most weak anomalies were eliminated. Based on the geological, geophysical, and geochemical results, this study inferred zones favorable for the further exploration of chromium deposits and determined four favorable metallogenic zones and five prospecting areas. -
-
[1] 陈炳蔚, 王彦斌, 左国朝. 青藏高原北部地体划分及其构造演化[J]. 地球物理学报, 1995, 38(S2):98-113.
[2] Chen B W, Wang Y B, Zuo G C. Terrain subdivision of the northern Qinghai-Xizang(Tibet) plateau and its tectonic evolution[J]. Chinese Journal of Geophysics, 1995, 38(S2):98-113.
[3] 殷鸿福, 张克信. 中央造山带的演化及其特点[J]. 地球科学, 1998, 23(5):438-442.
[4] Yin H F, Zhang K X. Evolution and characteristics of the Central Orogenic Belt[J]. Earth Science, 1998, 23(5):438-442.
[5] 于凤池, 马国良, 魏刚锋, 等. 青海滩间山金矿床地质特征和控矿因素分析[J]. 矿床地质, 1998, 17(1):47-56.
[6] Yu F C, Ma G L, Wei G F, et al. Geological characteristics and ore-controlling factors of the Tanjianshan gold deposit,Qinghai Province[J]. Mineral Deposits, 1998, 17(1):47-56.
[7] 姜芷筠, 赵呈祥, 李碧乐, 等. 柴北缘滩间山金矿田细晶沟花岗斑岩锆石U-Pb年龄与Hf同位素特征及其与金矿化的关系[J]. 黄金, 2020, 439(5):7-14.
[8] Jiang Z Y, Zhao C X, Li B L, et al. U-Pb age,Hf isotope of zircons from granite porphyry in Xijinggou,Tanjianshan Gold Field,Northern margin of Qaidam Basin,and their relations to the gold mineralization[J]. Gold, 2020, 439(5):7-14.
[9] 杨佰慧. 青海金龙沟金矿矿床地质特征及矿床成因研究[D]. 吉林: 吉林大学, 2019.
[10] Yang B H. Geological characteristics and genesis of Jinlonggou gold deposit in Qinghai[D]. Jilin: Jilin University, 2019.
[11] 呼格吉勒, 马国栋, 邓元良, 等. 滩间山地区青龙沟金矿床成矿条件及模式[J]. 西北地质, 2018, 51(3):155-160.
[12] Hu G J L, Ma G D, Deng Y L, et al. Metallogenic conditions and modes of the Qinglonggou gold deposit in Tanjianshan area,Qinghai[J]. Northwestern Geology, 2018, 51(3):155-160.
[13] 冯志兴, 陈正乐, 李正明, 等. 柴北缘锡铁山铅锌矿床控矿构造特征及找矿预测[J]. 地质力学学报, 2020, 26(3):329-344.
[14] Feng Z X, Chen Z L, Li Z M, et al. Characteristics of ore-controlling structures and oreprospecting of the Xitieshan lead-zinc deposit,Northern edge of the Qaidam basin,NW China[J]. Journal of Geomechanics, 2020, 26(3):329-344.
[15] 李明喜, 张文秦. 青藏高原水系沉积物地球化学衰减模式与区域地球化学勘查对策[J]. 青海地质, 1996(1):53-72.
[16] Li M X, Zhang W Q. The discuss of the geochemical attenuation pattern and regional exploration countermeasure in stream sediments on Qinghai-Tibet Plateau[J]. Geological of Qinghai, 1996(1): 53-72.
[17] 王富春, 王贵仁. 1:2.5万水系沉积物测量在柴达木周边地区金矿找矿工作中的应用及其效果[J]. 青海地质, 2001(S1):36-40.
[18] Wang F C, Wang G R. Application of 1:25000 stream sediment survey to gold-prospecting around Qaidum Basin and its effect[J]. Geological of Qinghai, 2001(S1):36-40.
[19] 李革委. 青海省格尔木红土沟—红石山一带元素地球化学特征及化探找矿效果[D]. 北京: 中国地质大学(北京), 2015.
[20] Li G W. Element geochemical characteristics and geochemical prospecting effect of Hongtugou-Hongshishan area in Golmud,Qinghai Province[D]. Beijing: China University of Geosciences(Beijing), 2015.
[21] 王晓云, 马忠贤, 李文君, 等. 青海省沟里地区金矿地质特征及控矿因素分析[J]. 中国锰业, 2017, 35(6):45-48,54.
[22] Wang X Y, Ma Z X, Li W J, et al. An analysis on geological characteristics and ore-controlling factors of gold deposits in Goulis region of Qinghai Province[J]. China’s Manganese Industry, 2017, 35(6):45-48,54.
[23] 赵娟, 许光, 杨宝荣, 等. 青海东昆仑地区1:2.5万地球化学测量方法技术及应用成果[J]. 西北地质, 2018, 51(1):209-217.
[24] Zhao J, Xu G, Yang B R, et al. Technique and application result of 1:25000 geochemical survey in East Kunlun,Qinghai Province[J]. Northwestern Geology, 2018, 51(1):209-217.
[25] 袁海彪, 陈健, 祁永爱. 1:2.5万地球化学测量在青海省都兰县尕之麻—约尔根地区找矿中的应用[J]. 世界有色金属, 2018, 514(22):42-42.
[26] Yuan H B, Chen J, Qi Y A. Application of 1:25000 geochemical survey to prospecting in Gazhima-Yorgenarea,Dulan County,Qinghai Province[J]. World Nonferrous Metals County, 2018, 514(22):42-42.
[27] 陈健. 1:2.5万地球化学测量在青海马里木吾卡地区找矿中的应用[J]. 黄金, 2019, 40(4):14-18.
[28] Chen J. Application of 1:25000 geochemical survey to ore prospecting in Malimuwuka area of Qinghai[J]. Gold, 2019, 40(4):14-18.
[29] 杨鸿鹏, 赵志逸, 韩杰, 等. 沟系土壤地球化学测量在东昆仑Au元素低背景区的应用及成效——以格尔木市深沟地区1:2.5万沟系土壤地球化学测量为例[J]. 矿产勘查, 2019, 10(2):291-301.
[30] Yang H P, Zhao Z Y, Han J, et al. Application and effect of soil geochemical survey in the Au low background of East Kunlun elemants: A case study of soil geochemistry in Shengou area of Geermu City[J]. Mineral Exploration, 2019, 10(2):291-301.
[31] 安朝, 杨敏, 陈熙, 等. 东昆仑东段都兰地区地球化学特征及其成矿意义——基于大比例尺微沟系(土壤)测量工作[J]. 地质与勘探, 2020, 494(6):56-67.
[32] An Z, Yang M, Chen X, et al. Geochemical characteristics and metallogenic significance of the Dulan area in the Eastern section of the East Kunlun Mountains derived from large-scale micro channel system(soil) measurement[J]. Geology and Exploration, 2020, 494(6):56-67.
[33] 陈宣华, 邵兆刚, 熊小松, 等. 祁连造山带断裂构造体系、深部结构与构造演化[J]. 中国地质, 2019, 46(5):995-1020.
[34] Chen X H, Shao Z G, Xiong X S, et al. Fault system,deep structure and tectonic evolution of the Qilian Orogenic Belt,Northwest China[J]. Geology in China, 2019, 46(5): 995-1020.
[35] 青海省矿产资源潜力评价[R]. 青海省地质矿产勘查开发局, 2017.
[36] Evaluation of Mineral Resources Potential in Qinghai Province[R]. Qinghai Provincial Bureau of Geology and Mineral Exploration and Development, 2017.
[37] 肖霞, 倪师军, 冯德新, 等. 水系沉积物测量在西藏夏日多地区找矿中的应用[J]. 有色金属工程, 2016, 6(1):71-76.
[38] Xiao X, Ni S J, Feng D X, et al. Application of stream sediment survey in Xiariduo area of Tibet[J]. Nonferrous Metals Engineering, 2016, 6(1):71-76.
[39] 翁望飞, 王德恩, 王邦民, 等. 安徽省祁门—黟县地区水系沉积物地球化学特征及找矿方向[J]. 物探与化探, 2020, 44(1):1-12.
[40] Weng W F, Wang D E, Wang B M, et al. Geochemical characteristics of stream sediments and prospecting direction in Qinmen-Yixian area of Anhui Province[J]. Geophysical and Geochemical Exploration, 2020, 44(1): 1-12.
[41] 臧金生, 王东晓, 赵瑞强. 化探异常定量评价[J]. 物探与化探, 2014, 38(6):1114-1118.
[42] Zang J S, Wang D X, Zhao R Q. Quantitative evaluation of geochemical anomalies[J]. Geophysical and Geochemical Exploration, 2014, 38(6): 1114-1118.
[43] 刘文辉. 应用浓幅分位值对确定区域成矿元素的探讨[J]. 甘肃科技, 2009, 25(1):41-44.
[44] Liu W H. Discuss on determining regional metallogenic elements by using concentration quantile value[J]. Gansu Science and Technology, 2009, 25(1):41-44.
[45] 陈健. 浓幅分位确定成矿元素的应用探究[J]. 新疆大学学报, 2019, 36(2):192-197.
[46] Chen J. Application of concentrated grading to determine the ore-forming elements[J]. Journal of Xinjiang University, 2019, 36(2): 192-197.
[47] 李武俊, 唐开金. 区域化探异常研究方法探讨[J]. 陕西地质, 1991, 9(1):57-67.
[48] Li W J, Tang K J. A discussion on the research methods of regional anomalies in geochemical exploration[J]. Geology of Shaanxi, 1991, 9(1):57-67.
[49] 崔晓亮, 刘婷婷, 王文恒, 等. 东昆仑布青山地区水系沉积物测量地球化学特征及找矿方向[J]. 物探与化探, 2011, 35(5):573-578.
[50] Cui X L, Liu T T, Wang W H, et al. Geochemical characteristics and ore search prospects of Buqingshan area in Qinghai Province based on stream sediment survey[J]. Geophysical and Geochemical Exploration, 2011, 35(5):573-578.
[51] 何旺, 罗先熔, 高文, 等. 青海省都兰县五龙沟—高地地区水系沉积物地球化学特征及找矿远景[J]. 矿物岩石地球化学通报, 2019, 38(5):1017-1023.
[52] He W, Luo X R, Gao W, et al. Geochemical characteristics of stream sediments in the Wulonggou-Gaodi area,Dulan County,Qinghai Province and their exploration prospective[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2019, 38(5):1017-1023.
[53] 郑明贵, 袁雪梅. 基于灰色神经网络的中国2020—2030年铬矿需求预测[J]. 资源开发与市场, 2018, 34(6):747-752.
[54] Zheng M G, Yuan X M. Demand forecasting of China’s chrome ore from 2020 to 2030 based on grey neural network[J]. Resource Development and Market, 2018, 34(6):747-752.
-
计量
- 文章访问数: 561
- PDF下载数: 105
- 施引文献: 0