中国自然资源航空物探遥感中心主办
地质出版社出版

基于探地雷达等效采样的时变零偏实时校正方法

冯温雅, 程丹丹, 王成浩, 程星. 2023. 基于探地雷达等效采样的时变零偏实时校正方法. 物探与化探, 47(2): 372-376. doi: 10.11720/wtyht.2023.2657
引用本文: 冯温雅, 程丹丹, 王成浩, 程星. 2023. 基于探地雷达等效采样的时变零偏实时校正方法. 物探与化探, 47(2): 372-376. doi: 10.11720/wtyht.2023.2657
FENG Wen-Ya, CHENG Dan-Dan, WANG Cheng-Hao, CHENG Xing. 2023. A real-time correction method based on time-varying zero offset for the equivalent sampling of ground penetrating radars. Geophysical and Geochemical Exploration, 47(2): 372-376. doi: 10.11720/wtyht.2023.2657
Citation: FENG Wen-Ya, CHENG Dan-Dan, WANG Cheng-Hao, CHENG Xing. 2023. A real-time correction method based on time-varying zero offset for the equivalent sampling of ground penetrating radars. Geophysical and Geochemical Exploration, 47(2): 372-376. doi: 10.11720/wtyht.2023.2657

基于探地雷达等效采样的时变零偏实时校正方法

  • 基金项目:

    国家重点研发计划项目(2018YFC0824603)

详细信息
    作者简介: 冯温雅(1983-),女,高级工程师,主要从事探地雷达信号处理工作
  • 中图分类号: TN957.5

A real-time correction method based on time-varying zero offset for the equivalent sampling of ground penetrating radars

  • 探地雷达系统的温漂现象、有耗媒质的低通效应以及天线与地面间耦合性的下降会导致回波变形,使有效雷达回波与零偏分量混叠,不利于弱小信号检测。传统的前端修正方法和后处理方法,旨在提高发射效率,去除杂波噪声,并未改善系统的信噪比和灵敏度。因此,该文采用时变零偏实时校正方法对等效采样电路进行改进,单独控制每个采样的零偏系数,并且每次采样实时更新叠代,避免将直流、低频成分与有效信号同时送入后续程控放大电路,保证了弱信号的正确采集及系统的动态范围。实验验证了该方法的有效性及可行性,已应用于新型号数字化探地雷达产品。
  • 加载中
  • [1]

    Niklas A, Jens T. Ground-penetrating radar surveying using antennas with different dominant frequencies[C]// 18th International Conference on Ground Penetrating Radar, 2020.

    [2]

    Che M, Ariffuddin J, Maryanti R, et al. Frequency based signal processing technique for pulse modulation ground penetrating radar system[J]. International Journal of Electrical and Computer Engineering, 2021, 11(5):4104-4112.

    [3]

    Cao Q, Al-Qadi I L. Signal stability and the height-correction method for ground-penetrating Radar In Situ Asphalt concrete density prediction[J]. Transportation Research Record Journal of the Transportation Research Board, 2021, 4(2):1-12.

    [4]

    Arvind S, Phong N, Kenneth A. A highly-digital multi-antenna ground-penetrating radar(GPR) system[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 26(5):94-109.

    [5]

    Fiseha N B, Yeong T C, Sung J L. Development of GPR device and analysis method to detect thickness of Ballast layer[J]. Journal of the Korean Society for Railway, 2020, 23(3):269-278.

    [6]

    Surajit K. A compact uniplanar ultra-wideband frequency selective surface for antenna gain improvement and ground penetrating radar application[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 28(6):22-36.

    [7]

    张斯薇, 吴荣新, 韩子傲, 等. 双边滤波在探地雷达数据去噪处理中的应用[J]. 物探与化探, 2021, 45(2):496-501.

    [8]

    Zhang S W, Wu R X, Han Z A, et al. The application of bilateral filtering to denoise processing of ground penetrating radar data[J]. Geophysical and Geochemical Exploration, 2021, 45(2):496-501.

    [9]

    王超, 沈斐敏. 小波变换在探地雷达弱信号去噪中的研究[J]. 物探与化探, 2015, 39(2):421-424.

    [10]

    Wang C, Shen F M. Study of wavelet transform in ground penetration radar weak signal denoising[J]. Geophysical and Geochemical Exploration, 2015, 39(2):421-424.

    [11]

    Wenchao H, Tong H, Hainan K, et al. Joint time-frequency analysis of ground penetrating radar data based on variational mode decomposition[J]. Journal of Applied Geophysics, 2020, 23(7):164-181.

    [12]

    Mansi A H, Castillo M P, Bernasconi G. Controlled laboratory test for the investigation of LNAPL contamination using a 2.0 GHz ground penetrating radar[J]. Bollettino Di Geofisica Teorica Ed Applicata, 2017, 58(3):169-180.

    [13]

    Yang J, Yun L D. 2D wavelet decomposition and F-K migration for identifying fractured rock areas using Ground Penetrating Radar[J]. Remote Sensing, 2021, 13(6):2280-2299.

    [14]

    Christine D, Sajad J. Resolution enhancement of deconvolved ground penetrating radar images using singular value decomposition[J]. Journal of Applied Geophysics, 2021, 25(6):193-200.

    [15]

    薛策文, 冯晅, 李晓天, 等. 全极化探地雷达多极化数据融合分析研究[J]. 雷达学报, 2021, 10(1):74-85.

    [16]

    Xue C W, Feng X, Li X T, et al. Multi-polarization data fusion analysis of full-polarimetric ground penetrating radar[J]. Journal of Radars, 2021, 10(1):74-85.

    [17]

    Brocker B, Dowdy J L, Anderson D T. Generative adversarial networks for ground penetrating radar in hand held explosive hazard detection[C]// Detection and Sensing of Mines,Explosive Objects,and Obscured Targets, 2018.

    [18]

    齐轩晨. 面向道路检测的探地雷达系统设计与实现[D]. 南京: 南京邮电大学, 2019.

    [19]

    Qi X C. Design and implementation of ground penetrating radar system for road detection[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019.

    [20]

    周炀. 基于FPGA的浅地表电磁探测实时数据处理技术研究[D]. 长春: 吉林大学, 2020.

    [21]

    Zhou Y. Researh on the real-time data processing technology for shallow surface electromagnetic detection based on FPGA[D]. Changchun: Jilin University, 2020.

    [22]

    何兴坤. 单通道脉冲探地雷达系统软件设计与开发[D]. 武汉: 华中科技大学, 2019.

    [23]

    He X K. Software design and development of single channel impulse ground penetrating radar system[D]. Wuhan: Huazhong University of Science and Technology, 2019.

  • 加载中
计量
  • 文章访问数:  946
  • PDF下载数:  85
  • 施引文献:  0
出版历程
收稿日期:  2021-12-21
修回日期:  2023-04-20
刊出日期:  2023-04-27

目录