Application of the integrated engineering geophysical exploration technology in the predrilling stage of shale gas well platforms in southern Sichuan Province
-
摘要: 四川南部地区岩溶广泛发育,煤矿采空区密布,以往单一勘查手段无法准确探测与识别,造成页岩气规模化、工厂化钻井极易出现故障、复杂事件等问题。针对川南地区复杂地形地质条件,采用了高密度电法、浅层地震法、瞬变电磁法、音频大地电磁法、微动等多种工程物探方法进行试验及对比分析,总结出了川南页岩气井平台工程物探集成技术,并应用在页岩气井平台建设中。后期钻井结果显示,该集成技术能够有效识别地下1 000 m以浅岩溶、煤矿采空区、覆盖层等不良地质体,为页岩气井平台选址、井身结构优化、钻进风险预测、缩短钻进周期、生态环境保护等方面提供技术支撑,取得了显著的经济效益、社会效益和生态效益,为长宁—威远国家级页岩气示范区和川南页岩气勘查开发试验区的建设提供了技术保障,加快了川南页岩气的开发进程。Abstract: Southern Sichuan Province has widely developed karsts and densely distributed coal mine goafs, which cannot be accurately detected and identified using a single existent exploration method. Consequently, large-scale and industrial drilling for shale gas is prone to induce failures and complex events. In light of the complex topographic and geological conditions in southern Sichuan, this study conducted tests and comparative analysis using multiple engineering geophysical exploration methods including electrical resistivity imaging, shallow seismic method, transient electromagnetic method, audio-magnetotelluric method, and microtremor survey method. As a result, an integrated engineering geophysical exploration technology for shale gas well platforms in southern Sichuan was formed and applied to the construction of shale gas well platforms. As indicated by drilling results, the integrated technology can effectively identify unfavorable geological bodies (e.g., shallow karsts, coal mine goafs, and overburdens) at a depth of less than 1000 m and provide technical support for siting shale gas well platforms, optimizing casing programs, predicting drilling risks, shortening drilling cycles, and protecting ecological environment, with remarkable economic, social, and ecological benefits having been achieved. Moreover, this integrated technology provides a technical guarantee for the construction of both the Changning-Weiyuan national shale gas demonstration zone and the southern Sichuan shale gas exploration and development pilot zone and accelerates the shale gas development in southern Sichuan.
-
-
[1] 雍锐, 陈更生, 杨学锋, 等. 四川长宁—威远国家级页岩气示范区效益开发技术与启示[J]. 天然气工业, 2022, 42(8):136-147.
[2] Yong R, Chen G S, Yang X F, et al. Profifitable development technology of the Changning-Weiyuan national shale gas demonstration area in the Sichuan basin and its enlightenment[J]. Natural Gas Industry, 2022, 42(8):136-147.
[3] 赵瑞, 许模, 范辰辰, 等. 川南古叙地区岩溶发育特征及影响因素探讨[J]. 水土保持研究, 2015, 22(2):316-319,327.DOI:10.13869/j.cnki.rswc.2015.02.059.
[4] Zhao R, Xu M, Fan C C, et al. Discussion on the characteristics of Karst development and influence factors in Gulin-Xuyong area of Southern Sichuan[J]. Research of Soil and Water Conservation, 2015, 22(2):316-319,327.DOI:10.13869/j.cnki.rswc.2015.02.059.
[5] Wang X M, Zhou X J, Yang X, et al. High-precision three-dimensional shale gas acquisition technology and its effectiveness in southern Sichuan rovince, Sichuan asin Province[C]// Proceedings of the 32nd National Natural Gas Academic Annual Conference (2020), 2020:538-547.DOI:10.26914/c.cnkihy.2020.064916.
[6] 余长恒, 周昊, 邹忠平, 等. 长宁地区页岩气钻井平台不同开孔层位不良地质体勘查[J]. 工程地球物理学报, 2019, 16(1):61-69.
[7] Yu C H, Zhou H, Zou Z P, et al. The Exploration of Unfavorable Geological Body ofShale Gas Drilling Platform at Different Openings in Changning Area[J]. Chinese Journal of Engineering Geophysics, 2019, 16(1):61-69.
[8] 籍增贤, 张正阳, 孙永彬. 高密度电阻率法对泥石流松散堆积层探测效果的分析[J]. 勘察科学技术, 2020(4):61-64.
[9] Ji Z X, Zhang Z Y, Sun Y B. Analysis of the effect of high density resistivity method on the detection of debris flow loose accumulation layer[J]. Investigation Science and Technology, 2020 (4): 61-64.
[10] 马董伟. 地震勘探方法在薄覆盖层区城市活断裂探测中的应用[J]. 物探与化探, 2019, 43(5):1038-1045.
[11] Ma D W. Application of seismic exploration method to urban active fault detection in thin overburden area[J]. Geophysical and Geochemical Exploration, 2019, 43(5):1038-1045.
[12] 孟凡松, 张刚, 陈梦君, 等. 高密度电阻率法二维勘探数据的三维反演及其在岩溶探测中的应用[J]. 物探与化探, 2019, 42(3):672-678.
[13] Meng F S, Zhang G, Chen M J, et al. 3D inversion of 2D high density resistivity data and its application in Karst Exploration[J]. Geophysical and Geochemical Exploration, 2019, 42(3):672-678.
[14] 吴俊林, 靳月文. 瞬变电磁法在采空区勘查中的应用[J]. 物探与化探, 2012, 36(S1):168-170.
[15] Wu J L, Jin Y W. Application of transient electromagnetic method in goaf exploration[J]. Geophysical and Geochemical Exploration, 2012, 36(S1):168-170.
[16] 余长恒, 张旭林, 王强, 等. 高密度电法在岩溶勘查中的参数试验——以四川南部宜宾市长宁页岩气开发区为例[J]. 矿产勘查, 2020, 11(9):1986-1992.
[17] Yu C H, Zhang X L, Wang Q, et al. Parameter test of high density electrical method in Karst exploration:Take the changning shale gas development area in Yibin, southern Sichuan Province as an example[J]. Mineral Exploration, 2020, 11(9):1986-1992.
[18] 沈福斌, 刘江宾, 王星明. 岩溶裂隙探测技术及应用[J]. 煤矿隐蔽致灾因素及探查技术研究, 2015(5):332-337.
[19] Shen F B, Liu J B, Wang X M. Karst fissure detection technology and its application[J]. Study on Hidden Disaster Causing Factors and Exploration Technology in Coal Mine, 2015 (5): 332-337.
-
计量
- 文章访问数: 771
- PDF下载数: 64
- 施引文献: 0