Study on avoidance distance between deposition hole and water conducting fracture
-
摘要: 界定处置单元与导水裂隙的安全避让距离是评价高放废物处置库场址适宜性的重要基础, 也是设计高放废物处置库的关键内容之一。本文以北山地下实验室所在的新场场址作为高放废物处置库的参考场址, 采用国际通用的安全评价软件GoldSim, 建立了处置库关闭后放射性核素迁移的计算模型, 并利用蒙特卡罗随机模拟方法初步分析了处置单元与完整围岩中导水裂隙的安全避让距离。结果表明, 在现有场址认识条件下(研究区80%的花岗岩岩体渗透系数小于1.0×10-9 m/s), 当导水裂隙渗透系数设为1.0×10-6 m/s时, 其与处置单元的安全避让距离不大于0.5 m; 场址花岗岩围岩渗透系数越小, 对应的安全避让距离相应越小。处置单元对导水裂隙安全避让距离的研究结果可为高放废物处置库选址及其设计提供参考。Abstract: The definition of avoidance distance between deposition hole and water conducting fracture is an important basis for evaluating the site suitability of the high-level waste disposal repository, and it is also one of the key contents of the design of high-level waste disposal repository. In this paper, the site of the Beishan underground research laboratory is taken as the reference site for geological disposal of high-level radioactive waste. This paper established a computational model for the release and migration of radionuclides after closure of repository by GoldSim. Then, the avoidance distance between deposition hole and water conducting fracture in intact rock was analyzed by the method of Monte Carlo stochastic simulation. The results show that a 80% hydraulic conductivity value of the granite in the study area is less than 1.0×10-9 m/s under the existing conditions, and when the hydraulic conductivity value of water conduction fracture is set to 1.0×10-6 m/s, the corresponding avoidance distance is less than 0.5 m. The smaller the permeability coefficient is, the smaller the corresponding safety avoidance distance is. The analysis of the results shows that the avoidance distance between the deposition hole and water conducting fracture can provide a feedback guidance for the site selection and design of the disposal repository.
-
Key words:
- granite /
- deposition hole /
- water conducting fracture /
- simulation /
- avoidance distance
-
-
[1] 王驹, 凌辉, 陈伟明.高放废物地质处置库安全特性研究[J].中国核电, 2017, 10(2):270-278.
Wang J, Ling H, Chen W M.Study on the safety functions of repository for geological disposal of high level radioactive waste[J].China Nuclear Power, 2017, 10(2):270-278.
[2] Wang J, Chen L, Su R, et al.The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China:Planning, site selection, site characterization and in situ tests[J].Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(3):411-435.
[3] SKB.Long-term safety for the final repository for spent nuclear fuel at forsmark, main report of the SR-Site project, SKB report TR-11-01[R].Stockholm:Svensk Kärnbränslehantering AB, 2011.
[4] POSIVA.Safety case for the disposal of spent nuclear fuel at Olkiluoto-Synhesis 2012, POSIVA 2012-12[R].Eurajoki, Finland:Posiva Oy, 2012.
[5] NWMO.Post-closure safety assessment of a used fuel repository in crystalline rock[R].Canada:Toronto, 2012.
[6] Technology Management Division.H12:Project to establish the scientific and technical basis for HLW disposal in Japan, Supporting Report 3:Safety assessment of the geological disposal system[R].Ibraki:Japan Nuclear Cycle Development Institute, 2000:V19-V92.
[7] 中华人民共和国住房和城乡建设部.GB/T 50218-2014工程岩体分级标准[S].北京:中国计划出版社, 2015.Ministry of Housing and Urban-Rural Development of the People’s Republic of China.GB/T 50218-2014 Standard for engineering classification of rock mass[S].Beijing:China Planning Press, 2015.
[8] 王驹, 苏锐, 陈亮, 等.中国高放废物地质处置地下实验室场址筛选[J].世界核地质科学, 2022, 39(1):1-13.
Wang J, Su R, Chen L, et al.Site selection of underground research laboratory for geological disposal of high-level radioactive waste in China[J].World Nuclear Geoscience, 2022, 39(1):1-13.
[9] 季瑞利, 张明, 周志超, 等.北山预选区钻孔水文地质试验方法研究[J].铀矿地质, 2018, 34(1):53-59.
Ji R L, Zhang M, Zhou Z C, et al.Research on in situ hydraulic test method in Beishan pre-selected area[J].Uranium Geology, 2018, 34(1):53-59.
[10] EPRI.Evaluation of the proposed high-level radioactive waste repository at Yucca Mountain using total system performance assessment, Phase 6, Technical Report 1003031[R].California:Electric Power Research Institute, Palo Alto, 2002.
[11] 刘月妙, 王驹, 曹胜飞, 等.中国高放废物地质处置缓冲材料大型试验台架和热-水-力-化学耦合性能研究[J].岩土力学, 2013, 34(10):2756-2762, 2789.
Liu Y M, Wang J, Cao S F, et al.A large-scale THMC experiment of buffer material for geological disposal of high level radioactive waste in China[J].Rock and Soil Mechanics, 2013, 34(10):2756-2762, 2789.
[12] 陈伟明.高放废物地质处置库系统分析方法研究--以甘肃北山预选区花岗岩场址为例[D].北京:核工业北京地质研究院, 2008.Chen W M.Study on systematic analysis method of geological disposal repository of high level radioactive waste-A case study of granite site in Beishan pre-selection area of Gansu Province[D].Beijing:Beijing Research Institute of Uranium Geology, 2008.
[13] IAEA.Reference biospheres for solid radioactive waste disposal, International Atomic Energy Agency, IAEA-BIOMASS-6[R].Vienna:IAEA, 2003.
-
计量
- 文章访问数: 25
- PDF下载数: 3
- 施引文献: 0