Improvement in active-source surface wave acquisition device and its application in subway construction exploration
-
摘要: 随着城市的快速发展, 地铁隧道的加速施工, 对隧道掘进前方不良地质体探测的需求越来越迫切。传统的电磁类方法在高电磁干扰的城镇环境中, 难以取得良好的探测效果。主动源面波勘探因抗干扰能力强、采集装置便捷、施工成本低等特点, 在城市浅地表勘察、工程物探中越来越受人们的青睐。而传统的主动源反射地震法仅能采用激发能量有限的重锤作为震源, 且采集信号极易被城市活动干扰, 同时城市柏油或水泥路面不利于检波器的放置以及锤击震源信号的激发, 本文针对这一问题, 分别对检波器装置和震源装置进行了低成本改进, 改进后的面波采集装置使用起来方便高效。经实际工程探测验证, 装置改进后所采集的面波信号能量强、信噪比高, 数据质量好, 反演成像效果好, 揭示的地质缺陷与实际情况对应良好。改进后的采集装置在城市主动源面波勘探中, 具有良好的推广价值和借鉴意义。Abstract: With the rapid development of cities and the accelerated construction of subway tunnels, there is an urgent demand for the detection of unfavorable geological bodies ahead of tunnel excavation.It is difficult for traditional electromagnetic methods to yield excellent detection results in an urban environment with high electromagnetic interference.Active-source surface wave exploration has gained increasing popularity in shallow superficial exploration and engineering geophysical prospecting in cities due to its strong anti-interference, convenient acquisition devices, and low construction cost.However, the traditional active-source reflection seismic method uses only a heavy hammer with limited excitation energy as a seismic source, and the collected signals are prone to be disturbed by urban activities.Meanwhile, the asphalt or cement pavement in urban areas is unfavorable for the placement of geophones and the excitation of seismic signals from a hammer.Given these, this study improved the geophones and seismic source devices at low costs, obtaining a more efficient and user-friendly surface wave acquisition device.As confirmed by practical engineering exploration, the improved device can collect surface-wave signals with strong energy and high signal-to-noise ratios, resulting in high-quality data, desirable inversion and imaging results, and high consistency between the geological defects and actual geological conditions.The improved acquisition device can be extensively promoted and referenced in active-source surface wave exploration in cities.
-
-
[1] 秦长春, 毛鹏宇, 韩要记, 等.确定地下金属管线弯头位置和埋深的实用技术 [J].工程地球物理学报, 2018, 15(5):655-659.
Qin C C, M P Y, H Y J, et al.Practical Techniques for determining the elbow position and depth of underground metal pipes [J].Chinese Journal of Engineering Geophysics, 2018, 15(5):655-659.
[2] 黄果, 刘争平, 刘茂洋.地下空洞的面波场地效应数值模拟研究 [J].地震工程学报, 2021, 43(2):468-475.
Huang G, Liu Z P, Liu M Y.Numerical simulation of site effect of surface wave in underground cavities [J].China Earthquake Engineering Journal, 2021, 43(2):468-475.
[3] 杨道煌, 刘江平, 程飞, 等.超声面波法在混凝土强度检测中的应用研究 [J].物探与化探, 2020, 44(3):626-634.
Yang D H, Liu J P, Cheng F, et al.The application of ultrasonic surface wave method to concrete strength testing [J].Geophysical and Geochemical Exploration, 2020, 44(3):626-634.
[4] 杨成林.瑞雷波法勘探原理及其应用 [J].物探与化探, 1989, 13(6):465-468.
Yang C L.The principle and application of Rayleigh wave exploration method [J].Geophysical and Geochemical Exploration, 1989, 13(6):465-468.
[5] 刘云祯, 王振东.瞬态面波法的数据采集处理系统及其应用实例 [J].物探与化探, 1996, 20(1):28-34.
Liu Y Z, Wang Z D.Data collection and processing system of transient surface wave method and examples of its application [J].Geophysical and Geochemical Exploration, 1996, 20(1):28-34.
[6] 赵勇刚, 刘江.瞬态面波剖面法在滑坡探查中的应用 [J].物探与化探, 2007, 31(S1):116-118.
Zhao Y G, Liu J.The application of the transient surface wave to the landslide exploration [J].Geophysical and Geochemical Exploration, 2007, 31(S1):116-118.
[7] 刘江平, 罗银河, 何伟兵.相邻道瞬态瑞雷面波法与压实度检测 [J].岩土工程学报, 2009, 31(11):1652-1659.
Liu J P, Luo Y H, He W B.Method of neighboring trace transient Rayleigh wave and its application in compactness inspection [J].Chinese Journal of Geotechnical Engineering, 2009, 31(11):1652-1659.
[8] 郑立宁, 谢强, 冯治国, 等.瞬态瑞雷面波法岩溶路基注浆质量检测现场试验研究 [J].岩土工程学报, 2011, 33(12):1934-1937.
Zheng L N, Xie Q, Feng Z G, et al.Field tests on grouting effect of Karst roadbed based on transient Rayleigh wave method [J].Chinese Journal of Geotechnical Engineering, 2011, 33(12):1934-1937.
[9] 杨天春, 肖巧玲.多层层状介质的瑞利面波频散特性 [J].物探与化探, 2009, 33(3) :299-303.
Yang T C, Xiao Q L.Dispersion characteristics of Rayleigh waves in multilayered media [J].Geophysical and Geochemical Exploration, 2009, 33(3):299-303.
[10] Tsai W H, Lin Y, Cheng C C.Detecting the depth of weak layer in concrete using R-wave dispersion techniques [J].NDT& E International, 2018, 98:161-170.
[11] 宋先海, 肖柏勋, 黄荣荣, 等.用等厚薄层权重自适应迭代阻尼最小二乘法反演瑞雷波频散曲线 [J].物探与化探, 2003, 27(3):212-216.
Song X H, Xiao B X, Huang R R, et al.The inversion of dispersion curves using self-adaptively iterative damping least square method by combining equal thinner layers with weighting matrix [J].Geophysical and Geochemical Exploration, 2003, 27(3):212-216.
[12] 凡友华, 刘雪峰, 陈晓非.面波频散反演地下层状结构的拟牛顿法 [J].物探与化探, 2006, 30(5):456-459.
Fan Y H, Liu X F, Chen X F.The QUASI Newton method in the inversion of the dispersion curve of Rayleigh wave in multilayered media [J].Geophysical and Geochemical Exploration, 2006, 30(5):456-459.
[13] 程飞, 刘江平, 毛茂, 等.参数自适应差分演化算法在面波频散曲线反演中的应用 [J].岩土工程学报, 2016, 38(1):147-154.
Cheng F, Liu J P, Mao M, et al.Self-adapting control parameters-based differential evolution algorithm for inversion of Rayleigh wave dispersion curves [J].Chinese Journal of Geotechnical Engineering, 2016, 38(1):147-154.
[14] 邵广周, 岳亮, 李远林, 等.被动源瑞利波两道法提取频散曲线的质量控制方法 [J].物探与化探, 2019, 43(6):1297-1308.
Shao G Z, Yue L, Li Y L, et al.A study of quality control of extracting dispersion curves by two-channel method of passive Rayleigh waves [J].Geophysical and Geochemical Exploration, 2019, 43(6):1297-1308.
[15] 吴华, 李庆春, 邵广周.瑞利波波形反演的发展现状及展望 [J].物探与化探, 2018, 42(6):1103-1111.
Wu H, Li Q C, Shao G Z.Development status and prospect of Rayleigh waveform inversion [J].Geophysical and Geochemical Exploration, 2018, 42(6):1103-1111.
[16] 邵广周, 李远林, 岳亮.主动源与被动源面波联合勘探在黄土覆盖区三维成像中的应用 [J].物探与化探, 2022, 46(4):897-903.
Shao G Z, Li Y L, Yue L.Joint application of active and passive surface wave in 3D imaging of loess covered area [J].Geophysical and Geochemical Exploration, 2022, 46(4):897-903.
-
计量
- 文章访问数: 36
- PDF下载数: 8
- 施引文献: 0