中国自然资源航空物探遥感中心主办
地质出版社出版

地震信号倒谱分解技术及其在超深层碳酸盐岩储层烃类检测中的应用

张永升, 黄超, 刘军, 张永恒, 王兴建, 薛雅娟. 2024. 地震信号倒谱分解技术及其在超深层碳酸盐岩储层烃类检测中的应用. 物探与化探, 48(6): 1618-1625. doi: 10.11720/wtyht.2024.1481
引用本文: 张永升, 黄超, 刘军, 张永恒, 王兴建, 薛雅娟. 2024. 地震信号倒谱分解技术及其在超深层碳酸盐岩储层烃类检测中的应用. 物探与化探, 48(6): 1618-1625. doi: 10.11720/wtyht.2024.1481
ZHANG Yong-Sheng, HUANG Chao, LIU Jun, ZHANG Yong-Heng, WANG Xing-Jian, XUE Ya-Juan. 2024. Cepstrum decomposition of seismic signals and its application in hydrocarbon detection of ultradeep carbonate reservoirs. Geophysical and Geochemical Exploration, 48(6): 1618-1625. doi: 10.11720/wtyht.2024.1481
Citation: ZHANG Yong-Sheng, HUANG Chao, LIU Jun, ZHANG Yong-Heng, WANG Xing-Jian, XUE Ya-Juan. 2024. Cepstrum decomposition of seismic signals and its application in hydrocarbon detection of ultradeep carbonate reservoirs. Geophysical and Geochemical Exploration, 48(6): 1618-1625. doi: 10.11720/wtyht.2024.1481

地震信号倒谱分解技术及其在超深层碳酸盐岩储层烃类检测中的应用

  • 基金项目:

    国家自然科学基金项目“基于相干成像的测井远探测高精度成像理论研究”(42074163)

详细信息
    作者简介: 张永升(1969-), 男, 高级工程师, 主要从事油气物探方法研究工作。Email:zhangys.xbsj@sinopec.com
  • 中图分类号: P618.13; |P631.4

Cepstrum decomposition of seismic signals and its application in hydrocarbon detection of ultradeep carbonate reservoirs

  • 地震信号倒谱分解技术是近年来发展起来的一种烃类检测方法, 有利于突出宽频带地震信号内某些特定频段的弱流体信息。本文着重研究了基于傅里叶变换倒谱和基于小波包变换倒谱的地震信号倒谱分解技术, 并应用于顺北地区超深层碳酸盐岩储层烃类检测。对比分析了共倒谱剖面与传统共频率剖面的特征, 进一步详细对比分析了基于傅里叶变换倒谱和基于小波包变换倒谱的一阶和二阶共倒频剖面特征, 在此基础上, 对比研究了基于傅里叶变换倒谱和基于小波包变换倒谱的烃类检测效果。实际地震数据处理结果表明, 倒谱分解技术较常规基于小波变换的谱分解技术时空分辨率更高, 能给出更多的细节信息。小波包倒谱分解技术较傅里叶变换倒谱分解技术检测到的地震幅度异常剖面能给出更准确的含气性解释结果。
  • 加载中
  • [1]

    曹俊兴, 刘树根, 田仁飞, 等.龙门山前陆盆地深层海相碳酸盐岩储层地震预测研究[J].岩石学报, 2011, 27(8):2423-2434.

    Cao J X, Liu S G, Tian R F, et al.Seismic prediction of carbonate reservoirs in the deep of Longmenshan foreland basin[J].Acta Petrologica Sinica, 2011, 27(8):2423-2434.

    [2]

    Cao J, Tian R, He X.Seismic-print Analysis and Hydrocarbon Identification[C]//AGU Fall Meeting Abstracts, AGUFM, 2011.

    [3]

    田仁飞, 曹俊兴.地震分倒频处理技术[J].地球物理学进展, 2012, 27(3):1183-1188.

    Tian R F, Cao J X.Seismic sub-inverted frequency processing technology[J].Progress in Geophysics, 2012, 27(3):1183-1188.

    [4]

    曹俊兴, 薛雅娟, 田仁飞, 等.深层碳酸盐岩储层含气性检测方法技术研究[J].石油物探, 2019, 58(1):9-16.

    Cao J X, Xue Y J, Tian R F, et al.Advances in hydrocarbon detection in deep carbonate reservoirs[J].Geophysical Prospecting for Petroleum, 2019, 58(1):9-16.

    [5]

    Xue Y J, Cao J X, Tian R F, et al.Wavelet-based cepstrum decomposition of seismic data and its application in hydrocarbon detection[J].Geophysical Prospecting, 2016, 64(6):1441-1453.

    [6]

    Cao J X, Jiang X D, Xue Y J, et al.The state-of-the-art techniques of hydrocarbon detection and its application in ultra-deep carbonate reservoir characterization in the Sichuan Basin, China[J].Frontiers in Earth Science, 2022, 10:851828.

    [7]

    Bogert B P, Healy M J R, Tukey J W.The quefrency analysis of time series for echoes:Cepstrum, pseudo-autocovariance, cross-cepstrum and saphe cracking[G]//Rosenblatt M.Proceedings of the Symposium on Time Series Analysis, 1963:209-243.

    [8]

    Ulrych T J.Application of homomorphic deconvolution to seismology[J].Geophysics, 1971, 36(4):650-660.

    [9]

    Ulrych T J, Jensen O G, Ellis R M, et al.Homomorphic deconvolution of some teleseismic events[J].Bulletin of the Seismological Society of America, 1972, 62(5):1269-1281.

    [10]

    Tuetuencueoglu K, Sate R.Cepstrum analysis for determination of rupture length of microearthquakes[J].IISEE Bulletin, 1974, 12:1-16.

    [11]

    Buhl P, Stoffa P L, Bryan G M.The application of homomorphic deconvolution to shallow-water marine seismology:Part ii:Real data[J].Geophysics, 1974, 39(4):417-426.

    [12]

    Scheuer T E, Wagner D E.Deconvolution by autocepstral windowing[J].Geophysics, 1985, 50(10):1533-1540.

    [13]

    Miah K H, Herrera R H, Van Der Baan M, et al.Application of fractional Fourier transform in cepstrum analysis[C]//Recovery-2011 CSPG CSEG CWLS Convention, 2011:1-4.

    [14]

    Hall M.Predicting bed thickness with cepstral decomposition[J].The Leading Edge, 2006, 25(2):199-204.

    [15]

    Oppenheim A V, Schafer R W.Discrete-time signal processing[M].Englewood Cliffs, NJ:Prentice Hall, 1989.

    [16]

    Oppenheim A V.Superposition in a class of nonlinear systems[D].Cambridge:Massachusetts Institute of Technology, 1965.

    [17]

    Sanchez F L, Barbon S, Vieira L S, et al.Wavelet-based cepstrum calculation[J].Journal of Computational and Applied Mathematics, 2009, 227(2):288-293.

    [18]

    Deng L, O'Shaughnessy D.Speech processing:A dynamic and optimization-oriented approach[M].CRC Press, 2003:50-52.

    [19]

    Korneev V A, Goloshubin G M, Daley T M, et al.Seismic low-frequency effects in monitoring fluid-saturated reservoirs[J].Geophysics, 2004, 69(2):522.

    [20]

    陈学华, 贺振华, 钟文丽.低频阴影与储层特征关系的数值模拟[J].中国矿业大学学报, 2011, 40(4):584-591.

    Chen X H, He Z H, Zhong W L.Numeric simulation in the relationship between low frequency shadow and reservoir characteristic[J].Journal of China University of Mining & Technology, 2011, 40(4):584-591.

  • 加载中
计量
  • 文章访问数:  45
  • PDF下载数:  9
  • 施引文献:  0
出版历程
收稿日期:  2024-02-11
修回日期:  2024-09-26

目录