中国自然资源航空物探遥感中心主办
地质出版社出版

基于孔喉分布碳酸盐岩储层类型划分

赵冰. 2024. 基于孔喉分布碳酸盐岩储层类型划分. 物探与化探, 48(1): 134-141. doi: 10.11720/wtyht.2024.2576
引用本文: 赵冰. 2024. 基于孔喉分布碳酸盐岩储层类型划分. 物探与化探, 48(1): 134-141. doi: 10.11720/wtyht.2024.2576
ZHAO Bing. 2024. Classification of carbonate reservoirs based on pore throat radius distributions. Geophysical and Geochemical Exploration, 48(1): 134-141. doi: 10.11720/wtyht.2024.2576
Citation: ZHAO Bing. 2024. Classification of carbonate reservoirs based on pore throat radius distributions. Geophysical and Geochemical Exploration, 48(1): 134-141. doi: 10.11720/wtyht.2024.2576

基于孔喉分布碳酸盐岩储层类型划分

  • 基金项目:

    中国石油化工股份有限公司科技攻关项目“江汉油田低渗致密油藏有效动用关键技术研究”(P20069-5)

详细信息
    作者简介: 赵冰(1995-), 女, 工程师, 2017年毕业于长江大学勘查技术与工程专业, 2020年毕业于长江大学地球探测与信息技术专业, 获硕士学位, 现主要从事油气藏开发工作。Email:605419901@qq.com
  • 中图分类号: P618.13

Classification of carbonate reservoirs based on pore throat radius distributions

  • 针对储集空间多样、非均质性强的碳酸盐岩储层, 由于内部孔隙结构复杂, 常规的岩石物理分类方法难以准确地划分储层类别, 特别是对孔喉半径呈现双峰、三峰等多峰分布的复杂多孔隙系统。本文以中东某油田M组碳酸盐岩储层为研究对象, 明确了岩石内部孔隙结构决定孔喉半径分布特征, 进而影响岩石的类型划分。因此从孔喉大小分布入手, 考虑多峰样品中每个峰对应孔隙组分对岩石储集空间及渗流作用的贡献, 以累积渗透率曲线为依据, 提出了结合孔喉大小及其占比的组合孔喉半径参数(Rmax*)来表征岩石的孔隙结构, 并对选取的114块双峰及43块三峰岩样进行分类。结合物性、压汞、薄片、测井等资料, 对每类储层特征展开了深入研究。结果表明, 相比于利用单一孔喉半径(Winland R35)的分类结果, Rmax*可以更好地表征储层孔隙结构, 提高储层的分类效果。
  • 加载中
  • [1]

    Weger R J, Eberli G P, Baechle G T, et al.Quantification of pore structure and its effect on sonic velocity and permeability in carbonates[J].AAPG Bulletin, 2009, 93(10):1297-1317.

    [2]

    李峰峰, 郭睿, 孙昭, 等.中东M油田Mishrif组碳酸盐岩储集层分类及主控因素[J].东北石油大学学报, 2021, 45(5):1-12, 131.

    Li F F, Guo R, Sun Z, et al.Classification and main controlling factors of carbonate reservoir of Mishrif Formation, M Oilfield in the Middle East[J] [J].Journal of Northeast Petroleum University, 2021, 45(5):1-12, 131.

    [3]

    谭学群, 廉培庆.碳酸盐岩油藏岩石分类方法研究[J].科学技术与工程, 2013, 13(14):3963-3967.

    Tan X Q, Lian P Q .Classification research on rock typing of carbonate reservoir[J].Science Technology and Engineering, 2013, 13(14):3963-3967.

    [4]

    Folk R L.Practical petrographic classification of limestones[J].AAPG Bulletin, 1959, 43(1):1-38.

    [5]

    Eberli G P, Baechle G T, Anselmetti F S, et al.Factors controlling elastic properties in carbonate sediments and rocks[J].The Leading Edge, 2003, 22(7):654-660.

    [6]

    冯进, 赵冰, 张占松, 等.珠江口盆地惠州凹陷储层测井产能分级与识别方法[J].物探与化探, 2020, 44(1):81-87.

    Feng J, Zhao B, Zhang Z S, et al.Classification and identification method of reservoir logging capacity in Huizhou depression of Pearl River mouth basin[J].Geophysical and Geochemical Exploration, 2020, 44(1):81-87.

    [7]

    Lonoy A.Making sense of carbonate pore systems[J].AAPG Bulletin, 2006, 90(9):1381-1405.

    [8]

    Purcell W R.Capillary pressures-their measurement using mercury and the calculation of permeability therefrom[J].Journal of Petroleum Technology, 1949, 1(2):39-48.

    [9]

    王小敏, 樊太亮.碳酸盐岩储层渗透率研究现状与前瞻[J].地学前缘, 2013, 20(5):166-174.

    Wang X M, Fan T L.Progress of research on permeability of carbonate rocks[J].Earth Science Frontiers, 2013, 20(5):166-174.

    [10]

    王永诗, 高阳, 方正伟.济阳坳陷古近系致密储集层孔喉结构特征与分类评价[J].石油勘探与开发, 2021, 48(2):266-278.

    Wang Y S, Gao Y, Fang Z W, et al.Pore throat structure and classification of Paleogene tight reservoirs in Jiyang depression, Bohai Bay Basin, China[J].Petroleum Exploration and Development, 2021, 48(2):266-278.

    [11]

    田瀚, 王贵文, 冯庆付, 等.碳酸盐岩储层复杂孔隙结构研究现状及进展[J].科学技术与工程, 2020, 20(29):11825-11833.

    Tian H, Wang G W, Feng Q F, et al.Review and prospective of complex pore structure of carbonate reservoir[J].Science Technology and Engineering, 2020, 20(29):11825-11833.

    [12]

    Schowalter T T.Mechanics of secondary hydrocarbon migration and entrapment[J].AAPG Bulletin, 1979, 63(5):723-760.

    [13]

    Pittman E D.Relationship of porosity and permeability to various parameters derived from mercury injection-capillary pressure curves for sandstone (1)[J].AAPG Bulletin, 1992, 76(2):191-198.

    [14]

    Torres-Verdin C, Nelaon P.Permeability, porosity, and pore-throat size? A three-dimensional perspective[J].Petrophysics, 2005, 46(6):452-455.

    [15]

    张萌, 乔占峰, 高计县, 等.伊拉克哈法亚油田Mishrif组MB1-2亚段局限台地碳酸盐岩储层特征及评价[J].东北石油大学学报, 2020, 44(5):35-45, 7.

    Zhang M, Qiao Z F, Gao J X, et al.Characteristics and evaluation of carbonate reservoirs in restricted platform in the MB1-2 Sub-Member of Mishrif Formation, Halfaya Oilfield, Iraq[J].Journal of Northeast Petroleum University, 2020, 44(5):35-45, 7.

    [16]

    王金娜, 王德海, 李宗宇, 等.巴什托油气田石炭系巴楚组碳酸盐岩储层特征及控制因素[J].东北石油大学学报, 2019, 43(1):75-86, 10.

    Wang J N, Wang D H, Li Z Y, et al.Characteristics and controlling factors of carbonate reservoir of Carboniferous Bachu Formation in Bashituo Oilfield[J].Journal of Palaeogeography, 2019, 43(1):75-86, 10.

    [17]

    Tucher M E, Wright V P.Carbonate sedimentology[M].London:Blackwell Scientific Publications, 1990.

    [18]

    刘航宇, 田中元, 郭睿, 等.复杂碳酸盐岩储层岩石分类方法研究现状与展望[J].地球物理学进展, 2017, 32(5):2057-2064.

    Liu H Y, Tian Z Y, Guo R, et al.Review and prospective of rock-typing for complex carbonate reservoirs[J].Progress in Geophysics, 2017, 32(5):2057-2064.

    [19]

    石磊, 管耀, 冯进, 等.基于多级次流动单元的砂砾岩储层分类渗透率评价方法--以陆丰油田古近系文昌组W53油藏为例[J].物探与化探, 2022, 46(1):78-86.

    Shi L, Guan Y, Feng J, et al.Multi-level division method of flow units for accurate permeability assessment of glutenite reservoirs:A case study of reservoir W53 of Paleogene Wenchang Formation in Lufeng oilfield[J].Geophysical and Geochemical Exploration, 2022, 46(1):78-86.

    [20]

    刘航宇, 田中元, 徐振永.基于分形特征的碳酸盐岩储层孔隙结构定量评价[J].岩性油气藏, 2017, 29(5):97-105.

    Liu H Y, Tian Z Y, Xu Z Y.Quantitative evaluation of carbonate reservoir pore structure based on fractal characteristics[J].Lithologic Reservoirs , 2017, 29(5):97-105.

    [21]

    邱隆伟, 周涌沂, 高青松, 等.大牛地气田石炭系-二叠系致密砂岩储层孔隙结构特征及其影响因素[J].油气地质与采收率, 2013, 20(6):15-18, 22, 112.

    Qiu L W, Zhou Y X, Gao Q S, et al.Study of porosity structure and its influences on Carboniferous and Permian tight sand reservoir rock in Danniudi gasfield, Ordos basin Petroleum[J].Geology and Recovery Efficiency, 2013, 20(6):15-18, 22, 112.

    [22]

    葛东升, 蔡振华, 刘灵童, 等.鄂尔多斯盆地东缘临兴地区太原组太2段致密砂岩储层孔隙结构及渗流特征分析[J].非常规油气, 2020, 7(6):11-17.

    Ge D S, Cai Z H, Liu L T, et al.Analysis on microscopic pore atructure and aeepage characteristics of tight sandstone reservoir of Tai 2 Section of Taiyuan Formation in Linxing area, Ordos Basin[J].Unconventional Oil & Gas, 2020, 7(6):11-17.

    [23]

    Al-qenae K J, Al-thaqafi S H, Al-khafji J O.New approach for the classification of rock Typing using a new technique for iso-pore throat lines in Winland’s Plot[C]//Baku:SPE Annual Caspian Technical Conference and Exhibition, 2015.

    [24]

    邱隆伟, 周涌沂, 高青松, 等.大牛地气田石炭系-二叠系致密砂岩储层孔隙结构特征及其影响因素[J].油气地质与采收率, 2013, 20(6):15-18, 22, 112.

    Qiu L W, Zhou Y Y, Gao Q S, et al.Study of porosity structure and its influences on Carboniferous and Permian tight sand reservoir rock in Danniudi gasfield, Ordos basin Petroleum[J].Geology and Recovery Efficiency, 2013, 20(6):15-18, 22, 112.

    [25]

    葛东升, 蔡振华, 刘灵童, 等.鄂尔多斯盆地东缘临兴地区太原组太2段致密砂岩储层孔隙结构及渗流特征分析[J].非常规油气, 2020, 7(6):11-17.

    Ge D S, Cai Z H, Liu L T, et al.Analysis on microscopic pore structure and seepage characteristics of tight sandstone reservoir of Tai 2 section of Taiyuan Formation in Linxing area, Ordos Basin[J].Unconventional Oil & Gas, 2020, 7(6):11-17.

    [26]

    李峰峰, 郭睿, 刘立峰, 等.伊拉克M油田白垩系Mishrif组潟湖环境碳酸盐岩储集层成因机理[J].地球科学, 2021, 46(1):228-241.

    Li F F, Guo R, Liu L F, et al.Genesis of reservoirs of lagoon in the mishrif Formation, M oilfield, Iraq[J].Earth Science, 2021, 46(1):228-241.

    [27]

    王瑞, 朱筱敏, 陈烨菲, 等.滨里海盆地肯基亚克地区中、下石炭统碳酸盐岩储层特征与成岩作用[J].石油与天然气地质, 2012, 33(2):225-235.

    Wang R, Zhu X M, Chen Y F, et al.Diagenesis and reservoir characteristics of the Lower-Middle Carboniferous carbonates in Kenkyak area Pre-Caspian Basin[J].Oil & Gas Geology, 2012, 33(2):225-235.

  • 加载中
计量
  • 文章访问数:  41
  • PDF下载数:  9
  • 施引文献:  0
出版历程
收稿日期:  2022-12-26
修回日期:  2023-10-20

目录