基于高密度电法的城市岩溶地下水通道三维电性成像

刘道涵, 徐俊杰, 齐信, 邬健强. 基于高密度电法的城市岩溶地下水通道三维电性成像[J]. 中国岩溶, 2023, 42(6): 1331-1338. doi: 10.11932/karst20230615
引用本文: 刘道涵, 徐俊杰, 齐信, 邬健强. 基于高密度电法的城市岩溶地下水通道三维电性成像[J]. 中国岩溶, 2023, 42(6): 1331-1338. doi: 10.11932/karst20230615
LIU Daohan, XU Junjie, QI Xin, WU Jianqiang. Three-dimensional electrical imaging of urban karst groundwater channels based on electrical resistivity tomography[J]. Carsologica Sinica, 2023, 42(6): 1331-1338. doi: 10.11932/karst20230615
Citation: LIU Daohan, XU Junjie, QI Xin, WU Jianqiang. Three-dimensional electrical imaging of urban karst groundwater channels based on electrical resistivity tomography[J]. Carsologica Sinica, 2023, 42(6): 1331-1338. doi: 10.11932/karst20230615

基于高密度电法的城市岩溶地下水通道三维电性成像

详细信息
    作者简介: 刘道涵(1987-),男,高级工程师,主要研究方向为地球物理方法及应用研究。E-mail:ldhwcgs@163.com
    通讯作者: 邬健强(1990-),男,高级工程师,主要研究方向为地球物理方法及应用研究。E-mail:1191261549@qq.com
  • 中图分类号: P631.3

Three-dimensional electrical imaging of urban karst groundwater channels based on electrical resistivity tomography

More Information
  • 岩溶地下水通道是隐伏岩溶区常见的地质现象,开展城市隐伏岩溶通道探测对城市地下空间开发和地质灾害防治具有重要意义。岩溶通道常具有高度的空间变异性,常规二维探测难以对其进行较好的表征。基于此,文章采用三维高密度电法对城市隐伏岩溶地下通道进行了精细探测,结合地球物理数值模拟和应用实例,分析三维高密度电法对不同充填类型岩溶地下通道的成像效果。结果表明:三维高密度电法较二维探测在数据量和分辨率上均有较大提升,可更直观地表征目标体三维电性结构特征,该探测方法对岩溶地下水通道成像具有优势;通过对武汉市源泉村岩溶地下水通道三维电性成像,揭示了该低温热泉的地下水运移特征,可为城市地热勘探开发提供参考。

  • 加载中
  • 图 1  三维高密度电法模拟计算

    Figure 1. 

    图 2  地表泉点工作区示意图

    Figure 2. 

    图 3  地表泉点二维高密度电法探测结果

    Figure 3. 

    图 4  地表泉点三维高密度电法反演结果

    Figure 4. 

  • [1]

    蒙彦, 雷明堂. 岩溶塌陷研究现状及趋势分析[J]. 中国岩溶, 2019, 38(3):411-417.

    MENG Yan, LEI Mingtang. Analysis of situation and trend of sinkhole collapse[J]. Carsologica Sinica, 2019, 38(3):411-417.

    [2]

    郭芳, 姜光辉, 王文科, 刘绍华. 岩溶洞穴交互带概念的提出及其在水资源管理中的意义[J]. 中国岩溶, 2019, 38(1):1-9.

    GUO Fang, JIANG Guanghui, WANG Wenke, LIU Shaohua. Concept of karst cave hyporheic zone and its significance in water resource management[J]. Carsologica Sinica, 2019, 38(1):1-9.

    [3]

    黄强兵, 彭建兵, 王飞永, 刘妮娜. 特殊地质城市地下空间开发利用面临的问题与挑战[J]. 地学前缘, 2019, 26(3):85-94.

    HUANG Qiangbing, PENG Jianbing, WANG Feiyong, LIU Nina. Issues and challenges in the development of urban underground space in adverse geological environment[J]. Earth Science Frontiers, 2019, 26(3):85-94.

    [4]

    罗小杰, 沈建. 我国岩溶地面塌陷研究进展与展望[J]. 中国岩溶, 2018, 37(1):101-111.

    LUO Xiaojie, SHEN Jian. Research progress and prospect of karst ground collapse in China[J]. Carsologica Sinica, 2018, 37(1):101-111.

    [5]

    王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7):1923-1937.

    WANG Guiling, LIN Wenjing. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica, 2020, 94(7):1923-1937.

    [6]

    李万伦, 刘素芳, 田黔宁, 吕鹏, 姜重昕, 贾凌霄. 城市地球物理学综述[J]. 地球物理学进展, 2018, 33(5):2134-2140.

    LI Wanlun, LIU Sufang, TIAN Qianning, LYU Peng, JIANG Zhongxin, JIA Lingxiao. Reviews in urban geophysics[J]. Progress in Geophysics, 2018, 33(5):2134-2140.

    [7]

    Chalikakis Kvrrf. Contribution of geophysical methods to karst-system exploration: An overview[J]. Hydrogeology Journal, 2011, 19(6):1169-1180. doi: 10.1007/s10040-011-0746-x

    [8]

    Li S C, Zhou Z Q, Ye Z H, Li L P, Zhang Q Q, Hu Z H. Comprehensive geophysical prediction and treatment measures of karst caves in deep buried tunnel[J]. Journal of Applied Geophysics, 2015, 116(2):247-257.

    [9]

    Djabir F, Abderrezak B, Mohamed C, Mohamed C, Said S, Abdeslam G, Mehdi A. Investigating karst collapse geohazards using magnetotellurics: A case study of M'rara basin, Algerian Sahara[J]. Journal of Applied Geophysics, 2019, 160:144-156. doi: 10.1016/j.jappgeo.2018.11.011

    [10]

    Amanatidou E, Vargemezis G, Tsourlos P. Combined application of seismic and electrical geophysical methods for karst cavities detection: A case study at the campus of the new University of Western Macedonia, Kozani, Greece[J]. Journal of Applied Geophysics, 2021, 196:107-177.

    [11]

    孙茂锐, 陈超, 刘路, 李星. 高密度电法与低频雷达天线同位置岩溶区实测分析[J]. 工程地球物理学报, 2021, 18(4):519-523.

    SUN Maorui, CHEN Chao, LIU Lu, LI Xing. Field study of high density electrical method and low frequency radar antenna at the same location in karst areas[J]. Chinese Journal of Engineering Geophysics, 2021, 18(4):519-523.

    [12]

    Valois R, Camerlynck C, Dhemaied A, Guerin R, Hovhannissian G, Plagnes V. Assessment of doline geometry using geophysics on the Quercy plateau karst (South France)[J]. Earth Surface Processes and Landforms, 2011, 36(9):1183-1192. doi: 10.1002/esp.2144

    [13]

    Solbakk T, Fichler C, Wheeler W, Lauritzen S, Ringrose P. Detecting multiscale karst features including hidden caves using microgravimetry in a Caledonian nappe setting: Mefjell massif, Norway[J]. Norsk Geologisk Tidsskrift, 2018, 98(3):359-378.

    [14]

    Fadhli Z, Saad R, Nordiana M M, Azwin N, Bery A A. Mapping subsurface karst formation using 2-D electrical resistivity imaging (2-D ERI)[J]. Electronic Journal of Geotechnical Engineering, 2015, 20(1):349-358.

    [15]

    邬健强, 赵茹玥, 甘伏平, 张伟, 刘永亮, 朱超强. 综合电法在岩溶山区地下水勘探中的应用:以湖南怀化长塘村为例[J]. 物探与化探, 2020, 44(1):93-98.

    WU Jianqiang, ZHAO Ruyue, GAN Fuping, ZHANG Wei, LIU Yongliang, ZHU Chaoqiang. The application of electrical prospecting method to groundwater exploration in karst mountainous areas: A case study of Changtang village, Huaihua area, Hunan Province[J]. Geophysical and Geochemical Exploration, 2020, 44(1):93-98.

    [16]

    陈贻祥, 黄奇波, 覃小群, 韩凯, 肖琼, 苗迎, 杜成亮, 贺德煌. 自然电场法与高密度电法联作在西江中下游岩溶区找水中的应用[J]. 中国岩溶, 2022, 41(5):684-697.

    CHEN Yixiang, HUANG Qibo, QIN Xiaoqun, HAN Kai, XIAO Qiong, MIAO Ying, DU Chengliang, HE Dehuang. Application of self-potential and high-density resistivity method to the water exploration in karst terrain of middle-lower reaches of Xijiang river[J]. Carsologica Sinica, 2022, 41(5):684-697.

    [17]

    朱飞飞. 地井联合物探技术在岩溶注浆检测中的应用[J]. 工程地球物理学报, 2022, 19(4):450-458.

    ZHU Feifei. Application of geophysical prospecting technology combined with ground and well in karst grouting detection[J]. Chinese Journal of Engineering Geophysics, 2022, 19(4):450-458.

    [18]

    张光保. 高密度电法在复杂岩溶地区路基勘测中的应用[J]. 工程地球物理学报, 2010, 7(3):344-347.

    ZHANG Guangbao. Application of high-density electrical technique to karst roadbed in complex areas[J]. Chinese Journal of Engineering Geophysics, 2010, 7(3):344-347.

    [19]

    Ungureanu C, Priceputu A, Bugea A L, Chiric A. Use of electric resistivity tomography (ERT) for detecting underground voids on highly anthropized urban construction sites[J]. Procedia Engineering, 2017, 209:202-209. doi: 10.1016/j.proeng.2017.11.148

    [20]

    覃政教. 地面物探在岩溶地基工程勘察中的应用:以桂林某花园综合楼为例[J]. 中国岩溶, 2005, 24(4):338-343.

    QIN Zhengjiao. Application of the ground physical exploration in karst foundation engineering prospecting: A case study from a comprehensive building in a garden of Guilin[J]. Carsologica Sinica, 2005, 24(4):338-343.

    [21]

    Anchuela O P, Juan A P, Casas Sainz A M, Anson D, Gil Garbi H. Actual extension of sinkholes: Considerations about geophysical, geomorphological, and field inspection techniques in urban planning projects in the Ebro basin (NE Spain)[J]. Geomorphology, 2013, 189:135-149. doi: 10.1016/j.geomorph.2013.01.024

    [22]

    Verdet C, Sirieix C, Marache A, Riss J, Portais J. Detection of undercover karst features by geophysics (ERT) Lascaux cave hill[J]. Geomorphology, 2020, 360:107177. doi: 10.1016/j.geomorph.2020.107177

    [23]

    Fu Z Y, Ren Z Y, Hua X R, Shi Y, Chen H, Chen C J, Li Y N, Tang J T. Identification of underground water-bearing caves in noisy urban environments (Wuhan, China) using 3D electrical resistivity tomography techniques[J]. Journal of Applied Geophysics, 2020, 174: 103966.

    [24]

    杨妍妨, 居和建, 甘伏平, 程洋, 王永. 断层-充水溶洞上不同装置三维高密度电阻率法正演模拟响应特征分析[J]. 中国岩溶, 2022, 41(5):708-717.

    YANG Yanfang, JU Hejian, GAN Fuping, CHENG Yang, WANG Yong. Response characteristics of forward modeling of 3D high-density resistivity method on different devices in the fault-water-filled cave[J]. Carsologica Sinica, 2022, 41(5):708-717.

    [25]

    刘道涵, 罗士新, 陈长敬. 高密度电阻率法在丹江口水源区尾矿坝监测中的应用[J]. 物探与化探, 2020, 44(1):215-219.

    LIU Daohan, LUO Shixin, CHEN Changjing. The application of high density resistivity method to the monitoring of tailings dam[J]. Geophysical and Geochemical Exploration, 2020, 44(1):215-219.

    [26]

    周文龙, 吴荣新, 肖玉林. 充水溶洞特征的高密度电法反演分析研究[J]. 中国岩溶, 2016, 35(6):699-705.

    ZHOU Wenlong, WU Rongxin, XIAO Yulin. Back analysis of high density resistivity method in the water-bearing karst cave[J]. Carsologica Sinica, 2016, 35(6):699-705.

    [27]

    郑智杰, 曾洁, 赵伟, 甘伏平. 高密度电法在岩溶区找水中的应用研究[J]. 地球物理学进展, 2019, 34(3):1262-1267.

    ZHENG Zhijie, ZENG Jie, ZHAO Wei, GAN Fuping. Application research of high density resistivity method in water exploring in karst area[J]. Progress in Geophysics, 2019, 34(3):1262-1267.

    [28]

    Torrese P. Investigating karst aquifers: Using pseudo 3-D electrical resistivity tomography to identify major karst features[J]. Journal of Hydrology, 2019, 580: 124257.

    [29]

    张欣, 赵明阶, 汪魁, 荣耀, 刘强. 电法三维成像技术在隧道岩溶探测中的应用[J]. 中国岩溶, 2016, 35(3):291-298.

    ZHANG Xin, ZHAO Mingjie, WANG Kui, RONG Yao, LIU Qiang. Application of 3D electrical resistivity tomography to a tunnel in a karst area[J]. Carsologica Sinica, 2016, 35(3):291-298.

    [30]

    孟凡松, 张刚, 陈梦君, 李怀良. 高密度电阻率法二维勘探数据的三维反演及其在岩溶探测中的应用[J]. 物探与化探, 2019, 43(3):672-678.

    MENG Fansong, ZHANG Gang, CHEN Mengjun, LI Huailiang. 3-D inversion of high density resistivity method based on 2-D high-density electrical prospecting data and its engineering application[J]. Geophysical and Geochemical Exploration, 2019, 43(3):672-678.

    [31]

    Papadopoulos N G, Tsourlos P, Papazachos C, Tsokas G N, Sarris A, Kim J H. An algorithm for fast 3D inversion of surface electrical resistivity tomography data: Application on imaging buried antiquities[J]. Geophysical Prospecting, 2011, 59(3):557-575. doi: 10.1111/j.1365-2478.2010.00936.x

  • 加载中

(4)

计量
  • 文章访问数:  997
  • PDF下载数:  97
  • 施引文献:  0
出版历程
收稿日期:  2022-02-13
刊出日期:  2023-12-25

目录