秦岭某抽蓄电站水库区岩溶发育特征及透水性研究

丁瑜, 甘伟琪, 冯磊, 颜英军, 马飞鹏. 秦岭某抽蓄电站水库区岩溶发育特征及透水性研究[J]. 中国岩溶, 2025, 44(1): 70-78. doi: 10.11932/karst20250105
引用本文: 丁瑜, 甘伟琪, 冯磊, 颜英军, 马飞鹏. 秦岭某抽蓄电站水库区岩溶发育特征及透水性研究[J]. 中国岩溶, 2025, 44(1): 70-78. doi: 10.11932/karst20250105
DING Yu, GAN Weiqi, FENG Lei, YAN Yingjun, MA Feipeng. Study on karst development characteristics and water permeability of a pumped- storage upper reservoir in the Qinling Mountains, Southern Shaanxi[J]. Carsologica Sinica, 2025, 44(1): 70-78. doi: 10.11932/karst20250105
Citation: DING Yu, GAN Weiqi, FENG Lei, YAN Yingjun, MA Feipeng. Study on karst development characteristics and water permeability of a pumped- storage upper reservoir in the Qinling Mountains, Southern Shaanxi[J]. Carsologica Sinica, 2025, 44(1): 70-78. doi: 10.11932/karst20250105

秦岭某抽蓄电站水库区岩溶发育特征及透水性研究

详细信息
    作者简介: 丁瑜(1980-),男,副教授,博士,主要从事地质灾害、生物岩土方面的研究。E-mail:thirdding@163.com
    通讯作者: 冯磊(1980-),男,高级工程师,主要从事水利水电项目工程地质、水文地质研究与管理工作。E-mail:175530900@qq.com
  • 中图分类号: TV697.32;P642.25

Study on karst development characteristics and water permeability of a pumped- storage upper reservoir in the Qinling Mountains, Southern Shaanxi

More Information
  • 秦岭是我国南北分界线,地形地貌、地质构造复杂,可溶岩分布广泛,岩溶是各项工程建设中无法回避的问题。岩溶发育可能造成水库渗漏,对抽蓄电站水库修建具有制约性影响。文章以陕南秦岭某抽水蓄能水库区灰岩为研究对象,采用钻探、钻孔电视成像及压水试验,对灰岩岩溶发育特征进行分析,结合岩溶发育特征,评价岩体透水性能。结果表明:研究区岩溶发育等级为强烈发育,岩溶裂隙普遍发育。溶洞呈串珠状分布,灰色鲕粒灰岩溶洞最发育,棕红色细晶灰岩次之,泥质灰岩溶洞不发育。研究区岩体透水性能为中等-极强,岩体透水性能与岩溶发育密切相关,平均透水率对数与线岩溶率呈线性关系,中等透水岩体岩溶以弱发育为主,强和极强透水岩体岩溶为中等-强烈发育为主。

  • 加载中
  • 图 1  典型试样薄片鉴定

    Figure 1. 

    图 2  研究区钻孔、剖面示意图

    Figure 2. 

    图 3  研究区地表岩溶洼地

    Figure 3. 

    图 4  钻探剖面溶洞分布

    Figure 4. 

    图 5  钻孔岩溶裂隙及吕荣值

    Figure 5. 

    图 6  线岩溶率与对数平均透水率相关关系

    Figure 6. 

  • [1]

    孟庆任. 秦岭的由来[J]. 中国科学:地球科学, 2017, 47(4):412-420. doi: 10.1360/N072016-00422

    MENG Qingren. Origin of the Qinling mountains[J]. Scientia Sinica Terrae, 2017, 47(4): 412-420. doi: 10.1360/N072016-00422

    [2]

    李大通, 罗雁. 中国碳酸盐岩分布面积测量[J]. 中国岩溶, 1983, 2(2):147-150.

    LI Datong, LUO Yan. Measurement of carbonate rocks distribution area in China[J]. Carsologica Sinica, 1983, 2(2): 147-150.

    [3]

    马守林. 陕南岩溶的初步探讨[J]. 水利水电技术, 1981(8):19-25.

    [4]

    杜朋召, 雷春荣, 高平. 东庄水库碳酸盐岩库段岩溶控制因素与发育规律研究[J]. 华北水利水电大学学报(自然科学版), 2018, 39(3):88-92.

    DU Pengzhao, LEI Chunrong, GAO Ping. Research on controlling factors and development rules of karst in carbonate rocks of Dongzhuang reservoir[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2018, 39(3): 88-92.

    [5]

    段乔文, 俞富有, 张天柏, 何伟, 段春林. 滇东高原罗平湾子水库岩溶渗漏机理及库外补漏设想[J]. 中国岩溶, 2022, 41(2):287-297.

    DUAN Qiaowen, YU Fuyu, ZHANG Tianbai, HE Wei, DUAN Chunlin. Karst leakage and its sealing at Wanzi reservoir in Luoping county on the plateau of eastern Yunnan[J]. Carsologica Sinica, 2022, 41(2): 287-297.

    [6]

    代志宏, 朱银红, 卢鹏, 李正顺, 赵锡荣. 非典型隐伏岩溶发育特征及渗漏研究:以大雪山水库为例[J]. 桂林理工大学学报, 2021, 41(3):518-524.

    DAI Zhihong, ZHU Yinhong, LU Peng, LI Zhengshun, ZHAO Xirong. Development characteristics and leakage of atypical concealed karst: Taking Daxueshan reservoir as an example[J]. Journal of Guilin University of Technology, 2021, 41(3): 518-524.

    [7]

    刘天云, 罗锐恒, 胡顺强, 赵永宾, 潘晓东, 刘伟. 文山小河尾水库岩溶渗漏水文地质条件与管道位置识别[J]. 中国岩溶, 2022, 41(1):88-99.

    LIU Tianyun, LU Ruiheng, HU Shunqiang, ZHAO Yongbin, PAN Xiaodong, LIU Wei. Hydrogeological conditions of karst leakage and identification of pipeline location in Xiaohewei reservoir, Wenshan[J]. Carsologica Sinica, 2022, 41(1): 88-99.

    [8]

    杜毓超, 李兆林, 唐健生. 湖南新田水浸窝水库渗漏分析及其治理[J]. 中国岩溶, 2003, 22(4):22-26.

    DU Yuchao, LI Zhaolin, TANG Jiansheng. Analysis on the leakage mechanism and the treatment method for Shuijinwo reservoir in Xintian county, Hunan Province[J]. Carsologica Sinica, 2003, 22(4): 22-26.

    [9]

    卢海平, 张发旺, 赵春红, 夏日元, 梁永平, 陈宏峰. 我国南北方岩溶差异[J]. 中国矿业, 2018, 27(Suppl.2):317-319.

    LU Haiping, ZHANG Fawang, ZHAO Chunhong, XIA Riyuan, LIANG Yongping, CHEN Hongfeng. Difference between southern karst and northern karst besides scientific issues that need attention[J]. China Mining Magazine, 2018, 27(Suppl.2): 317-319.

    [10]

    董云鹏, 杨钊, 孙圣思, 史小辉, 何登峰, 惠博, 龙晓平, 郭安林. 秦岭隆升过程及其如何控制气候环境?[J]. 地球科学, 2022, 47(10):3834-3836.

    [11]

    孟清, 白红英, 赵婷, 郭少壮, 齐贵增. 秦岭山地气候变化的地形效应[J]. 山地学报, 2020, 38(2):180-189.

    MENG Qing, BAI Hongying, ZHAO Ting, GUO Shaozhuang, QI Guizeng. Topographic characteristic of climate change in the Qinling mountains, China[J]. Mountain Research, 2020, 38(2): 180-189.

    [12]

    何军, 刘磊, 黎清华, 刘道涵, 陈标典, 张傲, 赵永波. 隐伏岩溶区地下空间探测技术方法研究:以武汉市为例[J]. 水文地质工程地质, 2020, 47(6):47-56.

    HE Jun, LIU Lei, LI Qinghua, LIU Daohan, CHEN Biaodian, ZHANG Ao, ZHAO Yongbo. Techniques for detecting underground space in hidden karst region: Taking Wuhan as an example[J]. Hydrogeology & Engineering Geology, 2020, 47(6): 47-56.

    [13]

    刘动, 林沛元, 陈贤颖, 黄胜, 马保松. 深圳岩溶空间发育规律统计分析[J]. 岩土力学, 2022, 43(7):1899-1912.

    LIU Dong, LIN Peiyuan, CHEN Xianying, HUANG Sheng, MA Baosong. Statistical analysis of karst spatial distribution in Shenzhen[J]. Rock and Soil Mechanics, 2022, 43(7): 1899-1912.

    [14]

    彭耀, 樊永生, 徐联泽, 刘基强, 董艳平. 钻孔电视成像在武汉地铁岩溶勘察中的应用[J]. 资源环境与工程, 2018, 32(1):134-136.

    PENG Yao, FAN Yongsheng, XU Lianze, LIU Jiqiang, DONG Yanping. Application of borehole TV imaging in the karst survey of Wuhan metro[J]. Resources Environment & Engineering, 2018, 32(1): 134-136.

    [15]

    王喜迁, 孙明国, 张皓, 江玉乐. 高密度电法在岩溶探测中的应用[J]. 煤田地质与勘探, 2011, 39(5):72-75.

    WANG Xiqian, SUN Mingguo, ZHANG Hao, JIANG Yule. Application of high-density electrical technique in karst detection[J]. Coal Geology & Exploration, 2011, 39(5): 72-75.

    [16]

    王亮, 李正文, 王绪本. 地质雷达探测岩溶洞穴物理模拟研究[J]. 地球物理学进展, 2008, 87(1):280-283.

    WANG Liang, LI Zhengwen, WANG Xuben. A study of geological radar to cavern detection and physical analogue[J]. Progress in Geophysics, 2008, 87(1): 280-283.

    [17]

    冯涛, 蒋良文, 曹化平, 王栋. 高铁复杂岩溶“空天地”一体化综合勘察技术[J]. 铁道工程学报, 2018, 35(6):1-6.

    FENG Tao, JIANG Liangwen, CAO Huaping, WANG Dong. Research on the integrated survey technical system of "space-air-ground" in complex karst area of high speed railway[J]. Journal of Railway Engineering Society, 2018, 35(6): 1-6.

    [18]

    国家能源局. NB/T 10075-2018 水电工程岩溶工程地质勘察规程[S].

    National Energy Administration. NB/T 10075-2018 Specification for karst engineering geological investigation of hydropower projects[S].

    [19]

    杨志斌, 董书宁. 压水试验定量评价单孔注浆效果影响因素分析[J]. 煤矿安全, 2018, 49(6):187-194.

    YANG Zhibin, DONG Shuning. Influence factors analysis of quantitative evaluation of single borehole grouting effect by water pressure test[J]. Safety in Coal Mines, 2018, 49(6): 187-194.

  • 加载中

(6)

计量
  • 文章访问数:  35
  • PDF下载数:  1
  • 施引文献:  0
出版历程
收稿日期:  2023-07-18
修回日期:  2024-01-25
录用日期:  2024-02-18
刊出日期:  2025-02-25

目录