The lithospheric structure of the lower Yangtze Craton and its adjacent regions by S receiver function imaging
-
摘要:
下扬子及其邻区位于欧亚板块、太平洋板块和菲律宾海板块的交汇地带,自中生代以来经历了广泛的伸展变形和岩浆活动,其岩石圈结构和性质对深入认识华南块体乃至整个中国东部的显生宙构造演化以及相关动力学过程都具有重要意义。本文使用中国科学院地质与地球物理研究所地震台阵实验室在合肥—金华沿线布设的流动地震台阵数据,通过S波接收函数偏移成像方法对下扬子及其邻区岩石圈的速度间断面结构进行了研究。成像结果显示,主测线下方Moho面深度为32~42 km,岩石圈底界面深度为84~112 km,总体表现为西深东浅,且速度间断面结构与区域构造特征变化趋势相一致。这为下扬子及其邻区岩石圈中生代以来的改造和减薄提供了新的观测证据:华北南部盆地区下方Moho面结构复杂,岩石圈较厚(90~112 km),表明该区域的改造程度相对较低;下扬子克拉通与华夏块体北缘岩石圈结构特征相似,仅在江南造山带附近Moho面和岩石圈底界面有小尺度变化,表明它们自新元古代拼合以来可能作为一个整体被改造。进一步结合同剖面南段大地电磁测深成像结果,文章对研究区的岩石圈改造提出了与华北地区相似的地幔流模型,郯庐断裂带和江南造山带两侧断裂带等薄弱带在太平洋板块俯冲的作用下,可能成为软流圈物质上涌的通道。
Abstract:The lower Yangtze Craton, Located at the triple junction area of the Eurasian Plate, Pacific Plate, and Philippine Sea Plate, has undergone intensive extension and magmatic activities ever since the Mesozoic. The lithospheric structure and property of the lower Yangtze Craton and its adjacent regions could throw new insight into the tectonic evolution and dynamic process of the South China Block or even the whole eastern China in the Phanerozoic. In this paper, the authors collected data from the NCISP-Ⅲ arrays deployed by the Institute of Geology and Geophysics, Chinese Academy of Sciences, and used the wave equation-based migration technique of S-receiver function to image the lithospheric structure. The results show that the Moho depth and lithosphere-asthenosphere boundary (LAB) depth along the profile is~32-42 km and~84-112 km, respectively. Both of the discontinuities deepen from east to west, and the variation of them corresponds well to the tectonic features. The results support the argument that the lower Yangtze Craton and its adjacent regions may have undergone extensive lithospheric modification and thinning since the Mesozoic:The Hefei Basin of the southern NCC is characterized by a complicated Moho and thick lithosphere, indicating that the modification in this region is of less extent. The lower Yangtze Craton and the Cathysia Block may have behaved coherently in the Mesozoic modification, because the lithospheric structures of this two blocks are alike, only characterized by subtle undulation of the velocity discontinuities beneath the Jiangnan Orogen. Combined with the magnetotelluric results in the southern part of this profile, the authors propose a similar mantle flow model as in the NCC to explain the modification in the lower Yangtze Craton and its adjacent regions. The lithosphere beneath the Tanlu Fault and the Jiangnan Orogen is mechanically weak, and may act as the upwelling channel of the asthenospheric material under the subduction of the Pacific Plate to facilitate the modification.
-
-
Bao X W, Song X D, Li J T. 2015. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography[J]. Eartth and Planetary Science Letters, 417:132-141. doi: 10.1016/j.epsl.2015.02.024
Carlson R W, Pearson D G, James D E. 2005. Physical, chemical, and chronological characteristics of continental mantle[J]. Reviews of Geophysics, 43(1):RG1001. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-2004RG000156/
Chen L, Zheng T Y, Xu W W. 2006. A thinned lithospheric image of the Tanlu Fault Zone, eastern China:Constructed from wave equation based receiver function migration[J]. Journal of Geophysical Research-Solid Earth, 111(B9):535-540. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-2005JB003974/
Chen L. 2009. Lithospheric structure variations between the eastern and central North China Craton from S-and P-receiver function migration[J]. Physics of the Earth and Planetary Interiors, 173(3/4):216-227. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=680e144bb0293dd867aeb5d0dec54e17
Chen L. 2010. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications[J]. Lithos, 120(1/2):96-115. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201101001007.htm
Chen L, Ai Y S. 2009. Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration[J]. Journal of Geophysical Research-Solid Earth, 114(B6):B06307. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-2008JB006221/
Chen L, Cheng C, Wei Z G. 2009. Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton[J]. Earth and Planetary Science Letters, 286(1/2):171-183. http://www.sciencedirect.com/science/article/pii/S0012821X09003690
Chen L, Jiang M M, Yang J H, Wei Z G, Liu C Z, Ling Y. 2014.Presence of an intralithospheric discontinuity in the central and western North China Craton:Implications for destruction of the craton[J]. Geology, 42(3):223-226. http://www.cnki.com.cn/Article/CJFDTotal-ZJJJ201501009.htm
Chen L, Tao W, Zhao L, Zheng T Y. 2008. Distinct lateral variation of lithospheric thickness in the northeastern North China Craton[J]. Earth and Planetary Science Letters, 267(1/2):56-68. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200901001009.htm
Chen L, Wen L X, Zheng T Y. 2005a. A wave equation migration method for receiver function imaging:1. Theory[J]. Journal of Geophysical Research-Solid Earth, 110(B11):165-174. http://www.researchgate.net/publication/241383025_A_Wave_Equation_Migration_Method_for_Receiver_Function_Imaging
Chen L, Wen L X, Zheng T Y. 2005b. A wave equation migration method for receiver function imaging:2. Application to the Japan subduction zone[J]. Journal of Geophysical Research-Solid Earth, 110(B11):165-174.
Chen L, Zheng T Y, Xu W W. 2006. A thinned lithospheric image of the Tanlu Fault Zone, eastern China:Constructed from wave equation based receiver function migration[J]. Journal of Geophysical Research-Solid Earth, 111(B9):535-540. http://www.researchgate.net/publication/228952899_A_thinned_lithospheric_image_of_the_Tanlu_Fault_Zone_eastern_China_Constructed_from_wave_equation_based_receiver_function_migration
Farra V, Vinnik L. 2000. Upper mantle stratification by P and S receiver functions[J]. Geophysical Journal International, 141(3):699-712. doi: 10.1046/j.1365-246x.2000.00118.x
Griffin W L, Andi Z, O'Reilly S Y, Ryan C G. 1998. Phanerozoic Evolution of the Lithosphere Beneath the sino-Korean Craton[M]. Mantle Dynamics and Plate Interactions in East Asia, American Geophysical Union (AGU), 107-126.
Jiang G M, Zhang G B, Lü Q T, Shi D N, Xu Y. 2013.3-D velocity model beneath the Middle-Lower Yangtze River and its implication to the deep geodynamics[J]. Tectonophysics, 606:36-47. doi: 10.1016/j.tecto.2013.03.026
Li X, Lo C H, Knittel U. 2000. Cretaceous magmatism and lithospheric extension in Southeast China[J]. Journal of Asian Earth Sciences, 18(3):293-305. doi: 10.1016/S1367-9120(99)00060-7
Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China:A flat-slab subduction model[J]. Geology, 35(2):179. http://d.old.wanfangdata.com.cn/NSTLQK/10.1130-G23193A.1/
Liu C Z, Liu Z C, Wu F Y, Chu Z Y. 2012. Mesozoic accretion of juvenile sub-continental lithospheric mantle beneath South China and its implications:Geochemical and Re-Os isotopic results from Ningyuan mantle xenoliths[J]. Chemical Geology, 291:0-198. http://www.sciencedirect.com/science/article/pii/S0009254111004050
Lü Q T, Shi D N, Liu Z D, Zhang Y Q, Dong S W, Zhao J H. 2015.Crustal structure and geodynamics of the Middle and Lower reaches of Yangtze metallogenic belt and neighboring areas:Insights from deep seismic reflection profiling[J]. Journal of Asian Earth Sciences, 114:704-716. doi: 10.1016/j.jseaes.2015.03.022
Oreshin S, Vinnik L, Peregoudov D, Roecker S. 2002. Lithosphere and asthenosphere of the Tien Shan imaged by S receiver functions[J]. Geophysical Research Letters, 29(8):32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2001GL014441
Ouyang L B, Li H Y, Lu Q T, Yang Y J, Li X F, Jiang G M, Zhang G B, Shi D N, Zheng D, Sun S J, Tan J, Zhou M. 2014. Crustal and uppermost mantle velocity structure and its relationship with the formation of ore districts in the Middle-Lower Yangtze River region[J]. Earth and Planetary Science Letters, 408:378-389. doi: 10.1016/j.epsl.2014.10.017
Qiang Jianke, Wang Xianying, Tang Jingtian, Pan Wei, Zhang Qianjiang. 2014. The geological structure along Huainan-Liyang magnetotelluric profile:Constraints from MT data[J]. Acta Petrologica Sinica, 30(4):957-965 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201404006
Shi D N, Lu Q T, Xu W Y, Yan J Y, Zhao J H, Dong S W, Chang Y F, SinoProbe-03-02 Team. 2013. Crustal structure beneath the middle-lower Yangtze metallogenic belt in East China:Constraints from passive source seismic experiment on the Mesozoic intracontinental mineralization[J]. Tectonophysics, 606:48-59. doi: 10.1016/j.tecto.2013.01.012
Shu Liangshu, Zhou Xinmin. 2002. Late Mesozoic tectonism of southeast China[J]. Geological Review, 48(3):249-260 (in Chinese with English abstract).
Wei Z G, Chen L, Li Z W, Ling Y, Li J. 2016. Regional variation in Moho depth and Poisson's ratio beneath eastern China and its tectonic implications[J]. Journal of Asian Earth Sciences, 115:308-320. doi: 10.1016/j.jseaes.2015.10.010
Wu F Y, Walker R J, Ren X W, Sun D Y, Zhou X H. 2003. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China[J]. Chemical Geology, 196(1/4):107-129. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c6705e8db4348a6f14fc9e7a7dcfe6cc
Wu Fuyuan, Xu Yigang, Gao Shan, Zheng Jianping. 2008.Lithospheric thinning and destruction of the North China Cration[J]. Acta Petrologica Sinica, 24(6):1145-1174 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200806001.htm
Wu Qingju, Zeng Rongsheng. 1998. The Crustal structue of QinghaiXizang Plateau inferred from broadband teleseismic waveform[J]. Chinese Journal of Geophysics, 41(5):669-679 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX199805010.htm
Wu Shanshan, Jiang Mingming, He Yumei, Zhao Liang, Ai Yinshuang. 2018. NW-SE strutural contrast of shear wave velocity and radial anisotropy beneath the Hefei-Jinhua seismic profile derived from ambient noise tomography[J]. Chinese Journal of Geophysics, 61(2):584-592 (in Chinese with English abstract).
Xiao Xiao, Wang Xianying, Tang Jingtian, Zhou Cong, Wang Yongqing, Chen Xiangbin and Lü Qingtian. 2014. Conductivity structure of the Lujiang-Zongyang ore concentrated area, Anhui Province:Constraints from magnetotelluric data[J]. Acta Geologica Sinica, 88(4):478-495 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201404004.htm
Xu Tao, Zhang Zhong Jie, Tian Xiao Bo, Liu Bao Feng, Bai Zhi Ming, Lü Qing Tian and Teng Ji Wen. 2014. Crustal structure beneath the Middle-Lower Yangtze metallogenic belt and its surrounding areas:Constraints from active source seismic experiment along the Lixin to Yixing profile in East China[J]. Acta Petrologica Sinica, 30(4):918-930 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201404003.htm
Xu X, O'Reilly S Y, Griffin W L, Zhou X. 2000. Genesis of young lithospheric mantle in southeastern China:An LAM-ICPMS trace element study[J]. Journal of Petrology, 41(1):111-148. doi: 10.1093/petrology/41.1.111
Xue Huaimin, Ma Fang, Song Yongqin, Xie Yaping. 2010.Geochronology and geochemisty of the Neoproterozoic granitoid association from eastern segment of the Jiangnan orogen, China:Constraints on the timing and process of amalgamation between the Yangtze and Cathaysia blocks[J]. Acta Petrologica Sinica, 26(11):3215-3244 (in Chinese with English abstract).
Yuan X, Kind R, Li X, Wang R. 2006. The Sreceiver functions:synthetics and data example[J]. Geophysical Journal International, 165(2):555-564. doi: 10.1111/j.1365-246X.2006.02885.x
Zhang H F, Nakamura E, Sun M, Kobayashi K, Zhang J, Ying J F, Tang Y J, Niu L F. 2007. Transformation of subcontinental lithospheric mantle through peridotite-melt reaction:Evidence from a highly fertile mantle xenolith from the North China Craton[J]. International Geology Review, 49(7):658-679. doi: 10.2747/0020-6814.49.7.658
Zhang H F. 2005. Transformation of lithospheric mantle through peridotite-melt reaction:A case of Sino-Korean craton[J]. Earth & Planetary Science Letters, 237(3):768-780. http://www.sciencedirect.com/science/article/pii/S0012821X05004292
Zhao L, Allen R M, Zheng T Y, Zhu R X. 2012. High-resolution body wave tomography models of the upper mantle beneath eastern China and the adjacent areas[J]. Geochemistry Geophysics Geosystems, 13(6):6007. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HYC201305160000011199
Zhao Yue, Zhai Mingguo, Chen Hong, Zhang Shuanhong. 2017. Paleozoic-Early Jurassic tectonic evolution of North China Craton and its adjacent orogenic belts[J]. Geology in China, 44(1):44-60(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201701004
Zheng J, O'Reilly S Y, Griffin W L, Ming Z, Lu F, Liu G. 2004. Nature and evolution of Mesozoic-Cenozoic lithospheric mantle beneath the Cathaysia block, SE China[J]. Lithos, 74(1):41-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=260dec38f937b9741c42cfde9f38114f
Zheng T Y, Zhao L, He Y M, Zhu R X. 2014. Seismic imaging of crustal reworking and lithospheric modification in eastern China[J]. Geophysical Journal International, 196(2):656-670. doi: 10.1093/gji/ggt420
Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China:Implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 326(3):269-287. http://www.sciencedirect.com/science/article/pii/S0040195100001207/pdf?md5=498f70655f1dbfbb3a2e4e7738d90458&pid=1-s2.0-S0040195100001207-main.pdf&_valck=1
Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution[J]. Episodes, 29(1):26-33. http://www.cqvip.com/Main/Detail.aspx?id=21590196
Zhu R X, Chen L, Wu F Y, Liu J L. 2011. Timing, scale and mechanism of the destruction of the North China Craton[J]. Science China-Earth Sciences, 54(6):789-797. http://link.springer.com/article/10.1007/s11430-011-4203-4
Zhu Rixiang, Xu Yigang, Zhu Guang, Zhang Hongfu, Xia Qunke, Zheng Tianyu. 2012. Destruction of the North China Craton[J]. Science China:Earth Science, 42(8):1135-1159 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201604001
Zhu R X, Zheng T Y. 2009. Destruction geodynamics of the North China craton and its Paleoproterozoic plate tectonics[J]. Chinese Science Bulletin, 54(19):3354-3366. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb-e200919002
强建科, 王显莹, 汤井田, 潘伟, 张钱江. 2014.淮南-溧阳大地电磁剖面与地质结构分析[J].岩石学报, 30(4):957-965. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201404006
舒良树, 周新民. 2002.中国东南部晚中生代构造作用[J].地质论评, 48(3):249-260. doi: 10.3321/j.issn:0371-5736.2002.03.004
吴福元, 徐义刚, 高山, 郑建平. 2008.华北岩石圈减薄与克拉通破坏研究的主要学术争论[J].岩石学报, 24(6):1145-1174. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200806001
吴庆举, 曾融生. 1998.用宽频带远震接收函数研究青藏高原的地壳结构[J].地球物理学报, 41(5):669-679. doi: 10.3321/j.issn:0001-5733.1998.05.010
吴珊珊, 姜明明, 何玉梅, 赵亮, 艾印双. 2018.利用背景噪声成像研究合肥-金华剖面地壳速度结构及径向各向异性的东西差异[J].地球物理学报, 61(2):584-592. http://www.cqvip.com/QK/94718X/201802/674510156.html
肖晓, 王显莹, 汤井田, 周聪, 王永清, 陈向斌, 吕庆田. 2014.庐枞矿集区大地电磁探测与电性结构分析[J].地质学报, 88(4):478-495. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201404003
徐涛, 张忠杰, 田小波, 刘宝峰, 白志明, 吕庆田, 滕吉文. 2014.长江中下游成矿带及邻区地壳速度结构:来自利辛-宜兴宽角地震资料的约束[J].岩石学报, 30(4):918-930. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201404003
薛怀民, 马芳, 宋永勤, 谢亚平. 2010.江南造山带东段新元古代花岗岩组合的年代学和地球化学:对扬子与华夏地块拼合时间与过程的约束[J].岩石学报, 26(11):3215-3244. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201011006
赵越, 翟明国, 陈虹, 张拴宏. 2017.华北克拉通及相邻造山带古生代-侏罗纪早期大地构造演化[J].中国地质, 44(1):44-60. doi: 10.3969/j.issn.1672-6995.2017.01.011 http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170104&flag=1
朱日祥, 徐义刚, 朱光, 张宏福, 夏群科, 郑天愉. 2012.华北克拉通破坏[J].中国科学:地球科学, 42(8):1135-1159. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx200804016
-