中国地质调查局 中国地质科学院主办
科学出版社出版

南祁连党河南山地区拐杖山岩群玄武岩年代学、地球化学及其构造环境

计波, 李向民, 黄博涛, 王磊, 王国强. 2024. 南祁连党河南山地区拐杖山岩群玄武岩年代学、地球化学及其构造环境[J]. 中国地质, 51(3): 965-977. doi: 10.12029/gc20200619003
引用本文: 计波, 李向民, 黄博涛, 王磊, 王国强. 2024. 南祁连党河南山地区拐杖山岩群玄武岩年代学、地球化学及其构造环境[J]. 中国地质, 51(3): 965-977. doi: 10.12029/gc20200619003
JI Bo, LI Xiangmin, HUANG Botao, WANG Lei, WANG Guoqiang. 2024. Zircon U−Pb dating and geochemistry of basalt in Guaizhangshan Group from the Southern Danghe Mountain in South Qilian and its tectonic setting[J]. Geology in China, 51(3): 965-977. doi: 10.12029/gc20200619003
Citation: JI Bo, LI Xiangmin, HUANG Botao, WANG Lei, WANG Guoqiang. 2024. Zircon U−Pb dating and geochemistry of basalt in Guaizhangshan Group from the Southern Danghe Mountain in South Qilian and its tectonic setting[J]. Geology in China, 51(3): 965-977. doi: 10.12029/gc20200619003

南祁连党河南山地区拐杖山岩群玄武岩年代学、地球化学及其构造环境

  • 基金项目: 国家自然科学基金项目(41802133)和中国地质调查局项目(DD20200208)联合资助。
详细信息
    作者简介: 计波,男,1986年生,硕士,工程师,主要从事区域地质调查、沉积学和岩石地球化学研究;E-mail:jiboxa@126.com
  • 中图分类号: P618.51

Zircon U−Pb dating and geochemistry of basalt in Guaizhangshan Group from the Southern Danghe Mountain in South Qilian and its tectonic setting

  • Fund Project: Supported by National Natural Science Foundation of China (No.41802133) and the project of China Geological Survey (No. DD20200208).
More Information
    Author Bio: JI Bo, male, born in 1986, master, engineer, engaged in regional geological survey, sedimentology, petrogeochemistry research; E-mail: jiboxa@126.com .
  • 研究目的

    前人在南祁连志留纪巴龙贡噶尔组中解体出新元古代拐杖山岩群,对该群中玄武岩的年龄、成因与成岩构造环境的研究是厘清南祁连地区构造演化的重要手段。

    研究方法

    本文基于 LA−ICP−MS 锆石 U−Pb 年龄和全岩地球化学分析等方法研究拐杖山岩群火山岩的形成年代、地球化学特征及地质意义。

    研究结果

    锆石U−Pb定年结果显示,玄武岩喷发年龄为(786.6±5.8)Ma,表明拐杖山岩群形成于新元古代早期。岩石地球化学分析结果表明,玄武岩SiO2含量在48.09%~50.97%,高TiO2(1.34%~2.55%),低MgO(5.78%~7.11%),显示亚碱性拉斑玄武岩特征。岩石轻、重稀土分异明显((La/Yb)N=3.76~4.51),无明显Eu异常(δEu=0.80~1.05),大离子亲石元素Ba、Th、U相对富集,Pb强富集,亏损Nb、Ta、Ti等高场强元素。

    结论

    岩石地球化学特征暗示拐杖山岩群玄武岩是遭受陆壳物质混染的地幔源区玄武岩,该火山岩形成于大陆裂谷环境,响应了全球新元古代Rodinia超大陆裂解事件。

  • 加载中
  • 图 1  祁连陆块构造位置与地质略图(a)(据夏林圻等, 2016)和南祁连党河南山地区地质简图(b)(据徐学义等, 2009修改)

    Figure 1. 

    图 2  拐杖山岩群石英片岩与玄武岩的宏观(a,b)与显微(c,d)特征

    Figure 2. 

    图 3  拐杖山岩群玄武岩锆石阴极发光(CL)图像

    Figure 3. 

    图 4  拐杖山岩群玄武岩锆石U−Pb年龄谐和图(a)与加权年龄平均值(b)

    Figure 4. 

    图 5  拐杖山岩群玄武岩SiO2−Nb/Y图解(a)(据Winchester and Floyd, 1977)和FeOT/MgO−SiO2图解(b)(据Miyashiro, 1975

    Figure 5. 

    图 6  拐杖山岩群玄武岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)

    Figure 6. 

    图 7  拐杖山岩群玄武岩Th−Ta−3/Hf(a)、Th−Nh/13−3/Hf(b)、Zr−Zr/Y(c)及Ti/1000−V(d)构造环境判别图

    Figure 7. 

    表 1  拐杖山岩群玄武岩锆石LA−ICP−MS U−Pb年龄

    Table 1.  LA−ICP−MS zircon U−Pb ages of basalt in the Guaizhangshan Group

    测点号 含量/10−6 Th/U 同位素比值 年龄/Ma
    Pb U Th 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
    PMJ−17−01 160 738 78 0.1 0.1652 0.0031 10.8258 0.1964 0.4756 0.0058 2509 31 2508 17 2508 26
    PMJ−17−02 46 87 35 0.4 0.0660 0.0028 1.1739 0.0483 0.1291 0.0019 806 86 789 23 783 11
    PMJ−17−03 158 230 258 1.1 0.0707 0.0046 1.2754 0.0814 0.1309 0.0026 949 129 835 36 793 15
    PMJ−17−04 33 174 106 0.6 0.0639 0.0028 1.1396 0.0480 0.1294 0.0019 738 89 772 23 785 11
    PMJ−17−05 406 455 450 1.0 0.0668 0.0013 1.2004 0.0234 0.1304 0.0014 831 41 801 11 790 8
    PMJ−17−06 45 63 25 0.4 0.1610 0.0035 10.3782 0.2175 0.4677 0.0061 2466 36 2469 19 2473 27
    PMJ−17−07 21 252 302 1.2 0.0680 0.0030 1.2215 0.0518 0.1304 0.0019 867 88 811 24 790 11
    PMJ−17−08 159 734 76 0.1 0.0773 0.0019 2.0370 0.0480 0.1912 0.0023 1129 47 1128 16 1128 12
    PMJ−17−09 418 460 452 1.0 0.113 0.0018 5.1850 0.0794 0.3321 0.0036 1853 28 1850 13 1849 17
    PMJ−17−10 62 119 496 4.2 0.0768 0.0033 1.9918 0.0838 0.1882 0.0028 1115 84 1113 28 1112 15
    PMJ−17−11 42 58 21 0.4 0.0727 0.0056 1.3080 0.0977 0.1305 0.0028 1006 148 849 43 791 16
    PMJ−17−12 48 94 137 1.5 0.0672 0.0028 1.2144 0.0500 0.1312 0.0019 843 85 807 23 795 11
    PMJ−17−13 45 86 85 1.0 0.0659 0.0040 1.1792 0.0704 0.1298 0.0023 805 123 791 33 786 13
    PMJ−17−14 116 223 238 1.1 0.0647 0.0066 1.1614 0.1157 0.1302 0.0030 765 200 783 54 789 17
    PMJ−17−15 133 316 254 0.8 0.0652 0.0022 1.1623 0.0374 0.1294 0.0016 780 68 783 18 784 9
    PMJ−17−16 107 397 145 0.4 0.0651 0.0039 1.1525 0.0675 0.1285 0.0022 777 121 778 32 779 13
    PMJ−17−17 52 69 89 1.3 0.0653 0.0043 1.1597 0.0739 0.1289 0.0024 783 131 782 35 782 14
    PMJ−17−18 83 104 68 0.7 0.0775 0.0013 2.1672 0.0360 0.2028 0.0022 1135 34 1171 12 1191 12
    PMJ−17−19 19 116 62 0.5 0.0652 0.0059 1.1574 0.1026 0.1287 0.0031 782 180 781 48 781 18
    PMJ−17−20 385 290 101 0.3 0.0674 0.0043 1.1931 0.0743 0.1285 0.0023 849 127 797 34 779 13
    PMJ−17−21 41 80 99 1.2 0.0786 0.0027 2.1432 0.0710 0.1979 0.0027 1162 66 1163 23 1164 14
    PMJ−17−22 14 27 45 1.7 0.0655 0.0045 1.1743 0.0791 0.1302 0.0025 789 138 789 37 789 14
    PMJ−17−23 56 108 80 0.7 0.0652 0.0063 1.1598 0.1103 0.1290 0.0031 781 192 782 52 782 18
    PMJ−17−24 22 223 175 0.8 0.0653 0.0038 1.1693 0.0668 0.1299 0.0022 784 118 786 31 787 13
    下载: 导出CSV

    表 2  拐杖山岩群玄武岩主量元素(%)和微量、稀土元素(10−6)分析结果

    Table 2.  Major (%), trace and rare earth elements concentrations (10−6) of basalt in the Guaizhangshan Group

    样号 PMJ−17−1h PMJ−17−2h PMJ−17−3h PMJ−17−4h PMJ−17−5h PMJ−17−6h PMJ−17−7h
    SiO2 48.53 50.97 48.2 49.11 49.88 49.81 48.09
    Al2O3 15.4 13.66 11.92 13.8 14.0 13.51 15.73
    Fe2O3 3.24 2.64 3.20 2.85 3.40 2.84 3.29
    FeO 8.23 7.49 8.27 7.29 7.04 7.61 7.37
    CaO 8.04 8.72 11.46 10.79 10.36 10.54 9.29
    MgO 5.95 5.78 7.03 6.05 5.92 6.36 7.11
    K2O 0.19 0.15 0.14 0.18 0.17 0.15 0.27
    Na2O 4.14 4.46 2.78 3.72 3.64 3.46 3.03
    TiO2 1.34 1.56 2.55 1.88 1.98 1.99 1.38
    P2O5 0.19 0.18 0.12 0.16 0.13 0.12 0.19
    MnO 0.19 0.19 0.22 0.18 0.18 0.20 0.18
    LOI 4.46 4.10 3.98 3.90 3.18 3.31 4.02
    Total 99.9 99.9 99.87 99.91 99.88 99.9 99.95
    Mg# 48.58 50.85 52.67 52.04 50.89 52.47 54.90
    Pb 15.3 19.3 27.3 16.9 12.4 19.8 23.5
    Zn 80.8 83.8 97.5 91.5 79.9 90.4 104
    Cr 95.8 156 184 106 132 167 114
    Ni 35.4 25.4 31.5 33.9 27.4 28.4 89.0
    Co 37.8 35.0 41.7 42.4 38.0 40.8 52.3
    Li 24.8 18.4 15.3 14.0 13.8 15.1 45.6
    Rb 6.21 3.23 2.03 2.74 2.96 2.40 25.1
    Cs 0.19 0.12 0.12 0.12 0.09 0.11 1.02
    Sr 355 287 330 409 416 371 372
    Ba 136 94.4 82.0 96.0 93.8 89.5 165
    V 284 363 507 405 411 434 231
    Sc 32.6 40.9 54.7 26.0 40.1 34.8 29.7
    Nb 6.19 7.85 7.43 4.99 5.42 5.59 5.44
    Ta 0.38 0.49 0.47 0.30 0.35 0.33 0.39
    Zr 240 318 207 170 182 186 99.9
    Hf 5.60 8.77 4.87 4.01 4.48 4.30 2.95
    Be 0.69 0.98 1.03 0.78 0.70 0.81 0.84
    U 0.40 0.50 0.38 0.29 0.30 0.34 0.34
    Th 1.86 2.46 1.50 0.90 1.28 1.12 2.70
    La 25.8 32.4 21.9 15.1 18.8 16.8 14.2
    Ce 57.1 71.0 51.8 36.4 42.9 38.6 36.6
    Pr 7.16 9.22 6.85 4.82 5.66 5.30 5.13
    Nd 28.3 35.7 28.0 19.2 22.3 20.3 22.1
    Sm 6.48 8.69 6.51 4.58 5.10 4.85 5.16
    Eu 2.00 2.31 2.01 1.64 1.78 1.69 1.70
    Gd 6.56 8.91 6.80 4.92 5.29 5.02 4.95
    Tb 1.11 1.49 1.15 0.84 0.91 0.88 0.80
    Dy 6.69 9.03 6.88 5.05 5.30 5.20 4.72
    Ho 1.37 1.95 1.37 1.00 1.10 1.07 0.99
    Er 4.09 5.54 3.91 2.97 3.10 3.00 2.63
    Tm 0.58 0.82 0.58 0.45 0.48 0.46 0.40
    Yb 4.10 5.36 3.96 2.88 3.26 3.08 2.55
    Lu 0.58 0.79 0.57 0.44 0.47 0.44 0.39
    Y 39.4 53.0 41.2 26.9 31.4 30.2 27.4
    ∑REE 151.92 193.21 142.29 100.29 116.45 106.69 102.32
    LREE 126.84 159.32 117.07 81.74 96.54 87.54 84.89
    HREE 25.08 33.89 25.22 18.55 19.91 19.15 17.43
    (La/Yb)N 4.51 4.34 3.97 3.76 4.14 3.91 3.99
    δEu 0.93 0.80 0.92 1.05 1.04 1.04 1.01
     注:Mg#=(MgO/40)/(MgO/40+FeOT/72+MnO/71)%。
    下载: 导出CSV
  • [1]

    Bai Chundong, Zhuan Shaopeng, Mao Zhifang, Chen Yuanyuan, Li Jie. 2019. LA−ICP−MS Zircon U−Pb ages, geochemical characteristics and geotectonic significance of the metamorphosed volcanic rocks in Neoproterozoic Balongonggaer Formation in Tianjun County, Southern Qilian Mountain[J]. Geological Review, 65(3): 755−771 (in Chinese with English abstract).

    [2]

    Baker J A, Menzies M A, Thirlwall M F, Macpherson C G. 1997. Petrogenesis of Quaternary intraplate volcanism, Sana’a, Yemen: Implications for plume–lithosphere interaction and polybaric melt hybridization[J]. Journal of Petrology, 38(10): 1359−1390. doi: 10.1093/petroj/38.10.1359

    [3]

    Dong Guo'an, Yang Huaiyi, Yang Hongyi, Liu Dunyi, Zhang Jianxin, Wan Yusheng, Zeng Jianyuan. 2007. Zircon SHRIMP U–Pb chronology of Precambrian basement in the Qilian block and its geological significance[J]. Chinese Science Bulletin, 52(13): 1572−1585 (in Chinese). doi: 10.1360/csb2007-52-13-1572

    [4]

    Du Yuansheng, Zhu Jie, Gu Songzhu. 2006. Sedimentary geochemistry and tectonic significance of Ordovician cherts in Sunan, North Qilian Mountains[J]. Earth Science——Journal of China University of Geosciences, 31(1): 101−109 (in Chinese with English abstract).

    [5]

    Ewart A, Marsh J S, Milner S C, Duncan A R, Kamber B S, Armstrong R A. 2004. Petrology and geochemistry of Early Cretaceous bimodal continental flood volcanism of the NW Etendeka, Namibia. Part 1: Introduction, mafic lavas and re–evaluation of mantal source components[J]. Journal of Petrology, 45(1): 59−105. doi: 10.1093/petrology/egg083

    [6]

    Ewart A, Milner S C, Armstrong R A, Dungan A R. 1998. Etendeka volcanism of the Goboboseb mountains and Messum igneous complex, Namibia. Part Ⅰ: Geochemical evidence of Early Cretaceous Tristan plum melts and the role of crustal contamination in the Parana–Etendeka CFB[J]. Journal of Petrology, 39(2): 191−225. doi: 10.1093/petroj/39.2.191

    [7]

    Fan Guangming, Lei Dongning. 2007. Precise timing and significance of Caledonian structural deformation Chronology in Southeast Qilian[J]. Earth Science— Journal of China University of Geosciences, 32(1): 39−44 (in Chinese with English abstract).

    [8]

    Fan Xinxiang, Kong Weiqiong, Yang Zhenxi, Zhao Jichang, Li Yuxing. 2020. U–Pb chronology, geochemical characteristics and petrogenesis of the Chelugou pluton in the western part of North Qilian orogenic belt[J]. Geology in China, 47(3): 755−766 (in Chinese with English abstract).

    [9]

    Feng Yimin, He Shiping. 1996. Geotectonic and Orogeny in Qilian Mountains[M]. Beijing: Geological Publishing House, 1–135 (in Chinese).

    [10]

    Fu C L, Yan Z, Guo X Q, Niu M L, Cao B, Wu Q, Li X C, Wang Z Q. 2019. Assembly and dispersal history of continental blocks within the Altun–Qilian–North Qaidam mountain belt, NW China[J]. International Geology Review, 61: 424−447. doi: 10.1080/00206814.2018.1428831

    [11]

    Gehrels G E, Yin A, Wang X F. 2003. Detrital–zircon geochronology of the northeastern Tibetan plateau[J]. Geological Society of America Bulletin, 115(7): 881−896. doi: 10.1130/0016-7606(2003)115<0881:DGOTNT>2.0.CO;2

    [12]

    He Shiping, Wang Hongliang, Chen Junlu, Xue Xueyi, Zhang Hongfei, Ren Guangmin, Yu Jiyuan. 2008. LA–ICP–MS U–Pb geochronology of basic dikes within Maxianshan rock group in the central Qilian Mountains and its tectonic implications[J]. Earth Science— Journal of China University of Geosciences, 33(1): 35−45 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.005

    [13]

    Hess P C. 1992. Phase equilibria constraints on the origin of ocean floor basalts[C]//Morgan J P, Blackman D K , Sinton J M (eds. ). Mantle Flow and Melt Generation at Mid–Ocean Ridges. Geophysical Monograph. Washington DC: American Geophysical Union, 67–102.

    [14]

    Ji Bo, Yu Jiyuan, Li Xiangmin, Huang Botao, Wang Lei. 2018. On disintegration of Balonggonggaer Formation and its definition of lithostratigraphic unit from Danghenanshan Area in South Qilian—Evidence from petrology and chronology[J]. Geological Bulletin of China, 37(4): 621−633 (in Chinese with English abstract).

    [15]

    Kieffer B, Arndt N, Lapierre H, Lapierre H, Bastien F, Bosch D, Pecher A, Yirgu G, Ayalew D, Eeis D, Jerram D A, Keller F, Meugniot C. 2004. Flood and shield basalts from Ethiopia: Magmas from the African superwell[J]. Journal of Petrology, 45(4): 793−834. doi: 10.1093/petrology/egg112

    [16]

    Li M, Wang C, Li R S, Joseph G M, Peng Y, Zhang J H. 2019. Identifying late Neoproterozoicearly Paleozoic sediments in the South Qilian Belt, China: A peri–Gondwana connection in the northern Tibetan Plateau[J]. Gondwana Research, 76: 173−184. doi: 10.1016/j.gr.2019.06.010

    [17]

    Li Yanguang, Wang Shuangshuang, Liu Minwu, Meng En, Wei Xiaoyan, Zhao Huibo, Jin Mengqi. 2015. U–Pb dating study of Baddeleyite by LA–ICP–MS: Technique and application[J]. Acta Geologica Sinica, 89(12): 2400−2418 (in Chinese with English abstract).

    [18]

    Li Y L, Tong X, Zhu Y H, Li J W, Zheng J P, Brouwer F M. 2018. Tectonic affinity and evolution of the Precambrian Qilian block: Insights from petrology, geochemistry and geochronology of the Hualong Group in the Qilian Orogen, NW China[J]. Precambrian Research, 315: 179−200. doi: 10.1016/j.precamres.2018.07.025

    [19]

    Luo Mingfei. 2010. Research on Early Paleozoic Tectonic Characters of DHNS, GS[D]. Chengdu: Chengdu University of Technology, 1–60 (in Chinese with English abstract).

    [20]

    Ma Xudong, Chen Danling. 2006. LA–ICP–MS zircon U–Pb dating of quartz–feldspathic gneisses–the country rocks of ultra–high–pressure metamorphic rocks on the northern margin of the Qaidam basin, Northwest China[J]. Geological Bulletin of China, 25(1/2): 99−103 (in Chinese with English abstract).

    [21]

    Mattinson C G, Menold C A, Zhang J X, Bird D K. 2007. High–and ultrahigh–pressure metamorphism in the north Qaidam and south Altyn terranes, western China[J]. International Geology Review, 49(11): 969−995. doi: 10.2747/0020-6814.49.11.969

    [22]

    Mattinson C G, Wooden J L, Liou J G, Bird D K, Wu C L. 2006. Geochronology and tectonic significance of Middle Proterozoic granitic orthogneiss, North Qaidam HP/UHP terrane, Western China[J]. Mineralogy and Petrology, 88: 227−241. doi: 10.1007/s00710-006-0149-1

    [23]

    Mattinson C G, Wooden J L, Zhang J X, Bird D K. 2009. Paragneiss zircon geochronology and trace element geochemistry, North Qaidam HP/UHP terrane, western China[J]. Journal of Asian Earth Science, 35(3): 298−309. doi: 10.1016/j.jseaes.2008.12.007

    [24]

    McDonald R, Rogers N W, Fitton J G, Black S, Smith M. 2001. Plume–lithosphere interactions in the generation of the basalts of the Kenya rift, East Africa[J]. Journal of Petrology, 42: 877−900. doi: 10.1093/petrology/42.5.877

    [25]

    Miyashiro A. 1975. Classification, characteristics and origin of ophiolites[J]. Journal of Geology, 83: 249−281. doi: 10.1086/628085

    [26]

    Niu Guangzhi, Huang Gang, Deng Changsheng, Xu Yan, Chen Tao, Ji Chun, Li Wenjun. 2016. LA–ICP–MS zircon U–Pb ages of metamorphic volcanic rocks in Balonggonggaer Formation of south Qilian Mountain in Qinghai Province and their geological significance[J]. Geological Bulletin of China, 35(9): 1441−1447 (in Chinese with English abstract).

    [27]

    Olsen K H. 1995. Continental Rifts: Evolution, Structure, Tectonics[M]. Amsterdam: Elsevier, 255–260.

    [28]

    Pan Jian, Li Guiyi, Li Guangtie. 2019. Re–division of Balonggonggaer Formation in Qinghai Province and its geological significance[J]. Global Geology, 38(4): 900−909 (in Chinese with English abstract).

    [29]

    Qin Yu. 2018. Neoproterozoic to Early Paleozoic Tectonic Evolution in the South Qilian Orogen[D]. Xi'an: Northwest University, 1–153 (in Chinese with English abstract).

    [30]

    Saunders A D, Storey M, Kent R W, Norry M J. 1992. Consequences of plume–lithosphere interactions[J]. Geological Society, London, Special Publications, 68: 41–60.

    [31]

    Shi Rendeng, Yang Jingsui, Wu Cailai, Wooden J. 2004. First SHRIMP dating for the Formation of the Late Sinian Yushigou ophiolite North Qilian Mountains[J]. Acta Geologica Sinica, 78(5): 649−657 (in Chinese with English abstract).

    [32]

    Song S G, Niu Y L, Su L, Xia X H. 2013. Tectonics of the North Qilian orogen, NW China[J]. Gondwana Research, 23(4): 1378−1401. doi: 10.1016/j.gr.2012.02.004

    [33]

    Song S G, Su L, Li X H, Zhang G B, Niu Y L, Zhang L F. 2010. Tracing the 850 Ma continental flood basalts from a piece of subducted continental crust in the North Qaidam UHPM belt, NW China[J]. Precambrian Research, 183(4): 805−816. doi: 10.1016/j.precamres.2010.09.008

    [34]

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematic of oceanic basalts: Implication for mantle composition and processes[C]//Saunders A D, Norry M J (eds.). Magmatism in Oceanic Basins. Geological Society, Special Publications, London, 42(1): 313–345.

    [35]

    Tseng C Y, Yang H J, Yang H Y, Liu D Y, Wu C L, Cheng C K, Chen C H, Ker C M. 2009. Continuity of the North Qilian and North Qinling orogenic belts, Central Orogenic System of China: Evidence from newly discovered Paleozoic adakitic rocks[J]. Gondwana Research, 16(2): 285−293. doi: 10.1016/j.gr.2009.04.003

    [36]

    Tung K, Yang H Y, Liu D Y, Zhang J X, Yang H J, Shau Y H, Tseng C Y. 2013. The Neoproterozoic granitoids from the Qilian block, NW China: Evidence for a link between the Qilian and South China blocks[J]. Precambrian Research, 235: 163−189. doi: 10.1016/j.precamres.2013.06.016

    [37]

    Wang C, Li R S, Smithies R H, Li M, He S P. 2017. Early Paleozoic felsic magmatic evolution of the western Central Qilian belt, Northwestern China, and constraints on convergent margin processes[J]. Gondwana Research, 41: 301−324. doi: 10.1016/j.gr.2015.12.009

    [38]

    Wang Guohua, Qi Ruirong, Jia Xiangxiang, Bing Mingming. 2016. Tectonic characteristics and age of Haerdawu schist in south Qilian area of Qihang Province[J]. Gansu Geology, 25(3): 48−52 (in Chinese).

    [39]

    Wang Jun, Sun Xinchun, Li Xiaoqiang, Liang Minhong, Wang Yuxi, Ren Xiuwen. 2019. Recognition and tectonic significance of previously named Balonggonggaer Formation in west Qilian Mountain[J]. Geological Bulletin of China, 38(7): 1116−1126 (in Chinese with English abstract).

    [40]

    Wang Lei, Li Xiangmin, Hu Zhaoguo, Yang Chao, Guo Lingfen, Yan Haizhong, Ge Ruichen, Ji Bo. 2019. Zircon U–Pb dating and geochemistry of Kebasitaobasalt from the middle part of southern Danghe mountains in southern Qilian andits geological implication[J]. Geotectonic et Metallogenia, 43(5): 1069−1077 (in Chinese with English abstract).

    [41]

    Wedepohl K H. 1995. The composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 59(7): 1217−1232. doi: 10.1016/0016-7037(95)00038-2

    [42]

    Wilson M. 1989. Igneous Petrogenesis[M]. London: Unwin Hyman, 1–466.

    [43]

    Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 20: 325−343. doi: 10.1016/0009-2541(77)90057-2

    [44]

    Wu C L, Gao Y Y, Frost B R, Robinson P T, Wooden J L, Wu S P, Chen Q L, Lei M. 2011. An early Paleozoic double–subduction model for the North Qilian oceanic plate: Evidence from zircon SHRIMP dating of granites[J]. International Geology Review, 53(2): 157−181. doi: 10.1080/00206810902965346

    [45]

    Xia L Q. 2014. The geochemical criteria to distinguish continental basalts from arc related ones[J]. Earth Science Review, 139: 195−212. doi: 10.1016/j.earscirev.2014.09.006

    [46]

    Xia L Q, Xia Z C, Xu X Y, Li X M, Ma Z P. 2012. Mid–late–Neoproterozoic rift–related volcanic rocks in China: Geological records of rifting and break–up of Rodinia[J]. Geoscience Frontiers, 3(4): 375−399. doi: 10.1016/j.gsf.2011.10.004

    [47]

    Xia Linqi, Li Xiangmin, Yu Jiyuan, Wang Guoqiang. 2016. Mid–Late Neoproterozoic to Early Paleozoic volcanism and tectonic evolution of the Qilian Mountain[J]. Geology in China, 43(4): 1087−1138 (in Chinese with English abstract).

    [48]

    Xia Linqi, Xia Zuchun, Ren Youxiang, Xu Xueyi, Yang Hequn. 2001. Tectonic–volcano–magma–metallogenic dynamics in North Qilian Mountains[M]. Beijing: China Land Press, 1–296 (in Chinese).

    [49]

    Xia Linqi, Xia Zuchun, Xu Xueyi. 2003. Magmagenesis of Ordovician back–arc basins in the Northern Qilian Mountains[J]. Geology in China, 30(1): 48–60 (in Chinese with English abstract).

    [50]

    Xia Linqi, Xia Zuchun, Xu Xueyi, Li Xiangmin, Ma Zhongping. 2007. The discrimination between continental basalt and island arc basalt based on geochemical method[J]. Acta Petrologica et Mineralogica, 26(1): 77−89 (in Chinese with English abstract).

    [51]

    Xiao W J, Windley B F, Yong Y, Yan Z, Yuan C, Liu C Z, Li J L. 2009. Early Paleozoic to Devonian multiple–accretionary model for the Qilian Shan, NW China[J]. Journal of Asian Earth Sciences, 35(3/4): 323−333. doi: 10.1016/j.jseaes.2008.10.001

    [52]

    Xu Xueyi, Li Xiangmin, Wang Hongliang. 2009. Metallogenic Geological Map And Specification of Qilian Mountains and Adjacent Areas on 1: 1000000[M]. Beijing: Geological Publishing House, 1–48 (in Chinese).

    [53]

    Xu Y J, Du Y S, Cawood P A, Guo H, Huang H, An Z H. 2010. Detrital zircon record of continental collision: Assembly of the Qilian Orogen, China[J]. Sedimentary Geology, 230(1): 35−45.

    [54]

    Xu Yajun, Du Yuansheng, Yang Jianghai. 2013. Tectonic evolution of the North Qilian orogenic belt from the Late Ordovician to Devonian: Evidence from detrital zircon geochronology[J]. Earth Science—Journal of China University of Geosciences, 38(5): 934−946 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.092

    [55]

    Yan Z, Aitchison J, Fu C L, Guo X Q, Niu M N, Xia W J, Li J L. 2015. Hualong Complex, South Qilian terrane: U–Pb and Lu–Hf constraints on Neoproterozoic micro–continental fragments accreted to the northern Proto–Tethyan margin[J]. Precambrian Research, 266: 65−85.

    [56]

    Yan Z, Fu C L, Aitchison J C, Niu M N, Buckman S, Cao B. 2019. Early Cambrian Muli arc–ophiolite complex: A relic of the Proto–Tethys oceanic lithosphere in the Qilian Orogen, NW China[J]. International Journal of Earth Sciences, 108: 1147−1164. doi: 10.1007/s00531-019-01699-6

    [57]

    Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan–Tibetan orogen[J]. Annual Review of Earth & Planetary Sciences, 28(28): 211−280.

    [58]

    Zhang J X, Meng F C, Wan Y S. 2007. A cold Early Paleozoic subduction zone in the North Qilian Mountains, NW China: Petrological and U–Pb geochronological constraints[J]. Journal of Metamorphic Geology, 25(3): 285−304. doi: 10.1111/j.1525-1314.2006.00689.x

    [59]

    Zhang J X, Yang J S, Meng F C, Wan Y S, Li H M, Wu C L. 2006. U–Pb isotopic studies of eclogites and their host gneisses in the Xitieshan area of the North Qaidam mountains, western China: New evidence for an Early Paleozoic HP–UHP metamorphic belt[J]. Journal of Asian Earth Sciences, 28: 143−150. doi: 10.1016/j.jseaes.2005.09.017

    [60]

    Zhao G J, Wang C, Zhu X H., Hao J B, Li H, Meert J G, Gai Y S, Long X P, Ma T. 2020. Intraoceanic back–arc magma diversity: Insights from a relic of the ProtoTethys oceanic lithosphere in the western Qilian Orogen, NW China[J]. Chemical Geology, 550: 119756. doi: 10.1016/j.chemgeo.2020.119756

    [61]

    Zhao Shenggui. 1996. Characteristics and tectonic evolution of Qilian orogenic belt[J]. Acta Geologica Gansu, 5(1): 16−31 (in Chinese).

    [62]

    白春东, 专少鹏, 毛志芳, 陈圆圆, 李杰. 2019. 南祁连天峻巴龙贡嘎尔组变质火山岩LA–ICP–MS锆石U–Pb年龄、地球化学特征及构造意义[J]. 地质论评, 65(3): 755−771.

    [63]

    董国安, 杨怀仁, 杨宏仪, 刘敦一, 张建新, 万渝生, 曾建元. 2007. 祁连地块前寒武纪基底锆石SHRIMPU–Pb年代学及其地质意义[J]. 科学通报, 52(13): 1572−1585.

    [64]

    杜远生, 朱杰, 顾松竹. 2006. 北祁连肃南一带奥陶纪硅质岩沉积地球化学特征及其多岛洋构造意义[J]. 地球科学(中国地质大学学报), 31(1): 101−109.

    [65]

    樊光明, 雷东宁. 2007. 祁连山东南段加里东造山期构造变形年代的精确限定及其意义[J]. 地球科学(中国地质大学学报), 32(1): 39−44.

    [66]

    樊新祥, 孔维琼, 杨镇熙, 赵吉昌, 李昱星. 2020. 北祁连造山带西段车路沟岩体U–Pb年代学、地球化学特征及岩石成因[J]. 中国地质, 47(3): 755−766. doi: 10.12029/gc20200314

    [67]

    冯益民, 何世平. 1996. 祁连山大地构造与造山作用[M]. 北京: 地质出版社, 1–135.

    [68]

    何世平, 王洪亮, 陈隽璐, 徐学义, 张宏飞, 任光明, 余吉远. 2008. 中祁连马衔山岩群内基性岩墙群锆石LA–ICP–MS U–Pb年代学及其构造意义[J]. 地球科学(中国地质大学学报), 33(1): 35−45.

    [69]

    计波, 余吉远, 李向民, 黄博涛, 王磊. 2018. 南祁连党河南山地区巴龙贡噶尔组的解体与岩石地层单位厘定—来自岩石学与年代学的证据[J]. 地质通报, 37(4): 621−633.

    [70]

    李艳广, 汪双双, 刘民武, 孟恩, 魏小燕, 赵慧博, 靳梦琪. 2015. 斜锆石LA–ICP–MS U–Pb定年方法及应用[J]. 地质学报, 89(12): 2400−2418. doi: 10.3969/j.issn.0001-5717.2015.12.015

    [71]

    罗明非. 2010. 甘肃党河南山早古生代大地构造性质研究[D]. 成都: 成都理工大学, 1–60.

    [72]

    马旭东, 陈丹玲. 2006. 柴达木盆地北缘超高压变质岩的围岩长英质片麻岩LA–ICP–MS 锆石U–Pb定年[J]. 地质通报, 25(1/2): 99−103.

    [73]

    牛广智, 黄岗, 邓昌生, 徐岩, 陈涛, 季春, 李文军. 2016. 青海南祁连巴龙贡噶尔组变火山岩LA–ICP–MS锆石U–Pb年龄及其地质意义[J]. 地质通报, 35(9): 1441−1447. doi: 10.3969/j.issn.1671-2552.2016.09.006

    [74]

    潘建, 李贵义, 李广铁. 2019. 青海省巴龙贡噶尔组的重新划分及地质意义[J]. 世界地质, 38(4): 900−909. doi: 10.3969/j.issn.1004-5589.2019.04.002

    [75]

    秦宇. 2018. 南祁连造山带新元古代–早古生代构造演化[D]. 西安: 西北大学, 1–153.

    [76]

    史仁灯, 杨经绥, 吴才来, Wooden J. 2004. 北祁连玉石沟蛇绿岩形成于晚震旦世的SHRIMP年龄证据[J]. 地质学报, 78(5): 649−657. doi: 10.3321/j.issn:0001-5717.2004.05.009

    [77]

    王国华, 齐瑞荣, 贾祥祥, 邴明明. 2016. 青海南祁连哈尔达乌片岩的构造特征及时代讨论[J]. 甘肃地质, 25(3): 48−52.

    [78]

    王军, 孙新春, 李小强, 梁明宏, 王玉玺, 任文秀. 2019. 祁连山西段当金山一带原巴龙贡噶儿组的重新厘定及其构造意义[J]. 地质通报, 38(7): 1116−1126. doi: 10.12097/j.issn.1671-2552.2019.07.005

    [79]

    王磊, 李向民, 胡兆国, 杨超, 郭令芬, 闫海忠, 葛瑞臣, 计波. 2019. 南祁连党河南山中段科克巴斯陶玄武岩年代学、地球化学特征及其地质意义[J]. 大地构造与成矿学, 43(5): 1069−1077.

    [80]

    夏林圻, 李向民, 余吉远, 王国强. 2016. 祁连山新元古代中—晚期至早古生代火山作用与构造演化[J]. 中国地质, 43(4): 1087−1138. doi: 10.12029/gc20160401

    [81]

    夏林圻, 夏祖春, 任有祥, 徐学义, 杨合群. 2001. 北祁连山构造–火山岩浆–成矿动力学[M]. 北京: 中国大地出版社, 1–296.

    [82]

    夏林圻, 夏祖春, 徐学义, 李向民, 马中平. 2007. 利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J]. 岩石矿物学杂志, 26(1): 77−89. doi: 10.3969/j.issn.1000-6524.2007.01.011

    [83]

    夏林圻, 夏祖春, 徐学义. 2003. 北祁连山奥陶纪弧后盆地火山岩浆成因[J]. 中国地质, 30(1): 48−60. doi: 10.3969/j.issn.1000-3657.2003.01.006

    [84]

    徐学义, 李向民, 王洪亮. 2009. 1: 100万祁连山及邻区成矿地质背景图及说明书[M]. 北京: 地质出版社, 1–48.

    [85]

    徐亚军, 杜远生, 杨江海. 2013. 北祁连造山带晚奥陶世–泥盆纪构造演化: 碎屑锆石年代学证据[J]. 地球科学(中国地质大学学报), 38(5): 934−946.

    [86]

    赵生贵. 1996. 祁连造山带特征及其构造演化[J]. 甘肃地质学报, 5(1): 16−31.

  • 加载中

(7)

(2)

计量
  • 文章访问数:  396
  • PDF下载数:  45
  • 施引文献:  0
出版历程
收稿日期:  2020-06-19
修回日期:  2020-08-27
刊出日期:  2024-05-25

目录