High resolution chemical sequence stratigraphy analysis of Wufeng Formation and Lower Longmaxi Formation in the Well Xindi 1, Upper Yangtze region
-
摘要:
研究目的 本文旨在综合地球化学、高分辨层序地层学理论和方法,探索厚层页岩地层划分对比的化学层序地层新方法,建立上扬子地区新地1井五峰组—龙马溪组下段高精度化学层序地层格架,为研究区页岩气勘探提供科学依据。
研究方法 本研究利用上扬子地区新地1井的岩心、测井及样品分析测试资料,优选出陆源输入强度相关元素组合、自生沉淀强度相关元素组合、有机质吸附及还原强度相关元素组合作为指标体系,进而划分四级化学层序地层。
研究结果 新地1井五峰组划分为LCW层序,龙马溪组下段自下而上细分为MCL1-1、MCL1-2、MCL1-3、MCL1-4四级层序。陆源输入强度相关元素组合总量在层序界面附近相对较高,而最大海泛面附近相对较低;自生沉淀强度及有机质吸附及还原强度相关元素组合总量在层序界面附近相对较低,而在最大海泛面附近相对较高。
结论 不同地化指标体系代表了不同的成因意义,陆源碎屑输入强度和自生沉淀强度越小、有机质吸附及还原强度越大的沉积环境有利于页岩中有机质富集,其旋回性变化对区域海平面变化有相应响应,具有区域一致性,是区域地层对比的重要依据和有力手段。
Abstract:This paper is the result of geological survey engineering.
Objective The purpose of this paper is to synthesize the theories and methods of comprehensive geochemistry and high resolution sequence stratigraphy. The high−precision chemical sequence stratigraphic framework of Wufeng Formation and Lower Longmaxi Formation in Xindi 1 Well, Upper Yangtze region was established to provide scientific basis for shale gas exploration in the study area.
Methods We use the core, logging and sample analysis data of Well Xindi 1 in Upper Yangtze region to optimize the indicators system which can divide the chemical sequence stratigraphic. The indicators system contains three elements assemblages: the terrigenous input intensity(TII), the autogenetic precipitation intensity(API), and the organic matter adsorption and deoxidation intensity(ODI). Then the fourth−order chemical sequence stratigraphy is divided by these three elements assemblages.
Results Based on the above indicators system, Wufeng Formation of Liutang section is divided into LCW sequence, the lower part of Longmaxi Formation is divided into MCL1−1, MCL1−2, MCL1−3, MCL1−4 fourth−order sequences upwardly. The total amount of elements assemblages related to TII is relatively high near the sequence boundary, but relatively low near the maximum oceanic flooding surface. However, the total amount of element assemblages related to API and ODI are generally lower near the sequence boundary and higher near the maximum flooding surface.
Conclusions Representing different genetic significance, the cyclic variation of element assemblages is respond to regional sea level change, and has regional consistency. The sedimentary environment with smaller TII, smaller API and larger ODI is conducive to organic matter enrichment in shale. So it can be used as the basis for regional stratigraphic correlation.
-
-
表 1 元素与矿物的亲缘关系(据Craigie,2018;Zhai et al.,2019修改)
Table 1. Genetic relationship between elements and minerals (modified from Craigie, 2018; Zhao et al., 2019)
元素 相关矿物 主要成因意义 Si 石英,其他硅酸盐 陆源或自生 Al、Ga 主要是黏土矿物,少量与长石有关 陆源 K、Rb 钾长石、云母和黏土矿物(特别是伊利石) 陆源 Cs、Sc 黏土矿物和长石 陆源 V 主要是黏土矿物。V在缺氧条件下吸附在黏土矿物上 还原 Ca 主要是方解石和白云石,也与石膏和硬石膏有关,少量与蒙脱石和斜长石有关 自生为主 Mg 主要是白云石、方解石和/或黏土矿物(尤其是绿泥石) 自生为主 Fe、Mn 各种黏土和碳酸盐矿物以及黄铁矿 陆源或自生 Na 主要是斜长石,但有些钠与石盐和/或黏土矿物(如蒙脱石)有关 陆源或自生 Ti、Ta、Nb 钛磁铁矿、磁铁矿、钛铁矿、金红石、锐钛矿和/或闪锌矿 陆源 Th 重矿物,特别是独居石、锆石和磷灰石 陆源 REE 轻稀土元素在黏土矿物和长石中最为丰富,而重稀土元素则存在于重矿物中 陆源 U 重矿物和有机物,还原环境 陆源或还原 Cr 重矿物,如铬尖晶石 陆源 Zr、Hf 锆石 陆源 P 生物磷、含磷重矿物(磷灰石和独居石),少量磷与碳酸盐和黏土矿物有关 自生 Zn、Ni、Mo、Co、Cu 黄铁矿、氢氧化铁、碳酸盐和/或黏土矿物 自生或陆源 Ba 碳酸盐,如重晶石 自生 Sr 长石、黏土矿物、碳酸盐 陆源或自生 表 2 新地1井五峰组—龙马溪组下段元素相关系数(R2)数据表
Table 2. Element correlation coefficient data of Wufeng−Lower Longmaxi Formation in the Well Xindi 1
Al Fe K Mg Ti Zr Ca Na Mn V Cr Ni Zn Cu Si Ba P As Pb Sr S Cl Al 1.00 Fe 0.92 1.00 K 0.96 0.84 1.00 Mg 0.27 0.18 0.39 1.00 Ti 0.90 0.81 0.89 0.17 1.00 Zr 0.48 0.41 0.49 0.19 0.49 1.00 Ca −0.47 −0.52 −0.29 0.49 −0.49 −0.12 1.00 Na 0.22 0.21 0.14 0.03 0.27 0.18 −0.21 1.00 Mn 0.08 0.10 0.17 0.56 −0.05 −0.01 0.43 −0.24 1.00 V 0.67 0.58 0.74 0.11 0.89 0.30 −0.35 0.21 −0.13 1.00 Cr 0.22 0.09 0.36 0.55 0.28 0.06 0.44 0.05 0.21 0.44 1.00 Ni −0.02 0.01 −0.07 −0.24 0.02 −0.11 −0.27 0.20 −0.23 0.19 0.04 1.00 Zn 0.12 0.12 0.09 −0.13 0.08 0.09 −0.22 −0.03 −0.13 0.21 0.08 0.55 1.00 Cu −0.33 −0.28 −0.29 0.12 −0.35 −0.13 0.45 −0.02 −0.03 −0.36 0.06 −0.37 −0.38 1.00 Si −0.46 −0.40 −0.62 −0.71 −0.40 −0.30 −0.50 −0.04 −0.47 −0.35 −0.52 0.24 0.11 −0.14 1.00 Ba 0.61 0.49 0.68 0.14 0.86 0.21 −0.31 0.23 −0.15 0.93 0.40 0.02 −0.01 −0.32 −0.33 1.00 P −0.69 −0.57 −0.71 −0.61 −0.57 −0.43 0.01 −0.26 −0.22 −0.34 −0.32 0.16 0.10 0.06 0.63 −0.40 1.00 As 0.09 0.13 0.13 0.22 0.00 −0.22 0.23 −0.01 0.35 0.04 0.15 −0.12 0.10 0.18 −0.34 −0.03 −0.10 1.00 Pb 0.23 0.31 0.11 −0.36 0.21 0.16 −0.45 0.34 −0.07 0.05 −0.33 0.31 0.08 −0.23 0.18 0.01 −0.04 −0.09 1.00 Sr −0.44 −0.52 −0.28 0.26 −0.45 −0.11 0.86 −0.20 0.28 −0.30 0.40 −0.29 −0.26 0.40 −0.36 −0.27 0.12 0.15 −0.40 1.00 S −0.04 −0.17 0.00 0.13 −0.16 −0.09 0.15 −0.46 0.43 −0.13 −0.07 −0.26 0.05 −0.11 −0.05 −0.13 0.00 0.27 −0.32 0.19 1.00 Cl −0.20 −0.13 −0.24 −0.17 −0.16 −0.17 −0.01 0.55 −0.19 −0.16 −0.26 0.09 −0.07 0.13 0.06 −0.11 0.03 0.14 0.45 −0.02 −0.16 1.00 表 3 新地1井五峰组—龙马溪组下段主量元素主成分矩阵
Table 3. Principal component matrix of major elements of Wufeng−Lower Longmaxi Formation in the Well Xindi 1
主量元素 主成分1 主成分2 主成分3 主成分4 主成分5 Fe2O3 0.915 −0.192 −0.123 0.122 −0.076 Al2O3 0.972 −0.142 −0.082 −0.001 0.016 K2O 0.974 0.038 −0.085 −0.112 −0.005 Na2O 0.260 −0.275 0.887 0.250 −0.082 MgO 0.400 0.774 0.187 0.045 0.448 TiO2 0.915 −0.233 −0.003 −0.116 0.003 CaO −0.344 0.868 0.189 −0.234 −0.146 SiO2 −0.601 −0.699 −0.137 0.259 0.211 MnO 0.173 0.748 −0.259 0.560 −0.142 表 4 新地1井五峰组—龙马溪组下段微量元素主成分矩阵
Table 4. Principal component matrix of trace elements of Wufeng−Lower Longmaxi Formation in the Well Xindi 1
微量元素 主成分1 主成分2 主成分3 主成分4 主成分5 V 0.864 0.314 0.010 0.171 −0.005 Cr 0.288 0.686 0.201 0.331 −0.370 Ni 0.416 −0.533 0.427 0.230 −0.317 Zn 0.396 −0.299 0.649 0.075 0.052 Cu −0.611 0.269 −0.341 0.259 −0.220 Ba 0.785 0.379 −0.144 0.147 0.013 P −0.440 −0.421 0.402 −0.055 −0.307 As −0.157 0.241 0.227 0.625 0.520 Pb 0.295 −0.664 −0.403 0.197 0.127 Sr −0.548 0.508 0.095 0.174 −0.260 S −0.254 0.271 0.424 −0.212 0.668 Cl −0.144 −0.446 −0.380 0.599 0.175 Zr 0.436 0.161 −0.369 −0.420 0.089 表 5 新地1井五峰组—龙马溪组下段化学层序地层特征数据
Table 5. Chemical sequence stratigraphic characteristics of Wufeng−Lower Longmaxi Formation in the Well Xindi 1
层序 陆源输入指标元素 自生沉淀指标元素 有机质吸附及还原强度指标元素 (Al+K+Fe+Ti)
/%EF-Al (Ca+Mg+Mn)/Al Sr/Al
/10−4(V+Ni+Ba+Zn)
/10−6EF(V+Ni+Ba+Zn) SBL2 26.99 0.98 0.87 16.45 1640.00 7.12 mfsL1-4 20.08 0.61 2.05 48.19 3432.00 10.76 SBL1-4 28.36 0.96 0.31 15.38 1938.00 8.03 MCL1-4(均值) 24.64 0.82 1.09 27.30 2698.18 9.35 mfsL1-3 20.93 0.66 1.39 27.06 2310.00 9.10 SBL1-3 26.77 0.93 0.26 11.00 2053.00 7.44 MCL1-3(均值) 26.13 0.88 0.52 17.61 2399.56 8.28 mfsL1-2 21.83 0.73 1.06 25.08 2149.00 7.98 SBL1-2 22.31 0.86 0.45 18.31 1892.00 7.74 MCL1-2(均值) 24.61 0.83 0.66 19.088 2022.47 7.59 mfsL1-1 6.31 0.15 4.09 145.6 1142.00 22.48 SBL1 20.14 0.65 0.98 45.43 1048.00 5.34 MCL1-1(均值) 13.48 0.44 2.28 63.79 1333.42 11.62 mfsW 9.42 0.30 1.22 49.17 1833.00 10.07 SBW 25.76 0.88 0.86 20.01 1339.00 5.28 LCW(均值) 20.14 0.67 1.16 30.32 1266.40 6.65 -
[1] Calvert S E, Pedersen T F. 1993. Geochemistry of recent oxic and anoxic sediments: Implications for the geological record[J]. Marine Geology, 113: 67−88. doi: 10.1016/0025-3227(93)90150-T
[2] Catuneanu O, Abreu V, Bhattacharya J P, Blum M D, Dalrymple R W, Eriksson P G, Fielding C R, Fisher W L, Galloway W E, Gibling M R, Giles K A, Holbrook J M, Jordan R, Kendall C G, Macurda B, Martinsen O J, Miall A D, Neal J E, Nummedal D, Pomar L, Posamentier H W, Pratt B R, Sarg J F, Shanley K W, Steel R J, Strasser A, Tucker M E, Winker C. 2009. Towards the standardization of sequence stratigraphy[J]. Earth−Science Reviews, 92(1/2): 1−33. doi: 10.1016/j.earscirev.2008.10.003
[3] Chen L, Lu Y C, Jiang S, Li J Q, Guo T L, Luo C. 2015. Heterogeneity of the Lower Silurian Longmaxi marine shale in the Southeast Sichuan Basin of China[J]. Marine and Petroleum Geology, 65: 232−246. doi: 10.1016/j.marpetgeo.2015.04.003
[4] Cheng Wenbin, Gu Xuexiang, Hu Xiumian, Li Youhe, Dong Shuyi. 2008. Comparative element geochemistry of recent oceanic red clay and cretaceous oceanic red bed[J]. Acta Geologica Sinica, 82(1): 37−47 (in Chinese with English abstract).
[5] Craigie N. 2018. Principles of Elemental Chemostratigraphy A Practical User Guide[M]. Springer, 1−177.
[6] Filzmoser P, Hron K. 2008. Outlier detection for compositional data using robust methods[J]. Mathematical Geosciences, 40(3): 233−248. doi: 10.1007/s11004-007-9141-5
[7] Guo Xusheng. 2017. Sequence stratigraphy and evolution model of the Wufeng−Longmaxi shale in the upper Yangtze area[J]. Earth Science, 42(7): 1069−1082 (in Chinese with English abstract).
[8] Haq B U, Hardenbol J, Vail P R. 1988. Mesozoic and cenozoic chronostratigraphy and cycles of sea−level change[C]//Wilgus C K, Hastings B S, Kendall C, et al. (ed.). Sea Level Changes — An Integrated Approach. SEPM Special Publication, 42: 71−108.
[9] Haq B U, Schutter S R. 2008. A chronology of paleozoic sea−level changes[J]. Science, 322: 64−68. doi: 10.1126/science.1161648
[10] Jiang Zhenxue, Song Yan, Tang Xianglu, Li Zhuo, Wang Xingmeng, Wang Guozhen, Xue Zixin, Li Xin, Zhang Kun, Chang Jiaqi, Qiu Hengyuan. 2020. Controlling factors of marine shale gas differential enrichment in southern China[J]. Petroleum Exploration and Development, 47(3): 1−12 (in Chinese with English abstract).
[11] Li Guanqing, Gu Xuexiang, Cheng Wenbin, Zhang Yongmei, Zhang Yan, Dai Hongzhang, Lü Pengrui, Zhang Xingguo, Xia Baoben. 2014. Geochemical characteristics and their geologic significance of the Lower Jurassic Ridang Formation Host Strata from the Zhaxikang Sb−Pb−Zn−Ag polymetallic ore−concentrated district, South Tibet[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 33(5): 598−608 (in Chinese with English abstract).
[12] Li Yifan, Fan Tailiang, Gao Zhiqian, Zhang Jinchuan, Wang Xiaomin, Zeng Weite, Zhang Junpeng. 2012. Sequence stratigraphy of Silurian black shale and its distribution in southeastern area of Chongqing[J]. Natural Gas Geoscience, 23(2): 299−306 (in Chinese with English abstract).
[13] Li Y H, Schoonmaker J E. 2003. Chemical composition and mineralogy of marine sediments[C]//Rudnick R L(ed. ). Sediments, Diagenesis, and Sedimentary Rocks. Treatise on Geochemistry, New York: Elsevier Sciences, 1−35.
[14] Liang Xing, Wang Gaocheng, Xu Zhengyu, Zhang Jiehui, Chen Zhipeng, Xian Chenggang, Lu Huili, Liu Chen, Zhao Chunduan, Xiong Shaoyun. 2016. Comprehensive evaluation technology forshale gas sweet spots in the complex marine mountains, South China: A case study from Zhaotong national shale gas demonstration zone[J]. Natural Gas Industry, 36(1): 33−42.
[15] Liang Xing, Zhang Tingshan, Shu Honglin, Min Huajun, Zhang Zhao, Zhang Lei. 2020. Evaluation of shale gas resource potential of Longmaxi Formation in Zhaotong National Shale Gas Demonstration Area in the Northern Yunnan−Guizhou[J]. Geology in China, 47(1): 72−87
[16] Lin Changsong, Zhang Yanmei, Liu Jingyan, Pang Baocheng. 2000. High resolution sequence stratigraphy and reservoir prediction[J]. Earth Science Frontiers, 7(3): 111−117 (in Chinese with English abstract).
[17] Lu Yangbo, Ma Yiquan, Wang Yuxuan, Lu Yongchao. 2017. The sedimentary response to the major geological events and lithofacies characteristics of Wufeng Formation−Longmaxi Formation in the Upper Yangtze Area[J]. Earth Science, 42(7): 1169−1184 (in Chinese with English abstract).
[18] Ma Xinhua, Xie Jun. 2018. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 45(1): 161−169 (in Chinese with English abstract).
[19] Ma Yongsheng, Cai Xunyu, Zhao Peirong. 2018. China’s shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 45(4): 561−574 (in Chinese with English abstract).
[20] Martín-Fernández J, Barceló−Vidal C, Pawlowsky−Glahn V. 2003. Dealing with zeros and missing values in compositional data sets using nonparametric imputation[J]. Mathematical Geology, 35(3): 253−278. doi: 10.1023/A:1023866030544
[21] Martín-Fernández J, Barceló−Vidal C, Pawlowsky−Glahn V. 2005. Subcompositional patterns in Cenozoic volcanic rocks of Hungary[J]. Mathematical Geology, 37(7): 729−752. doi: 10.1007/s11004-005-7377-5
[22] Palarea−Albaladejo J, Martín−Fernández J. 2008. A modified EM alr−algorithm for replacing rounded zeros in compositional data sets[J]. Computers & Geosciences, 34: 902−917.
[23] Palarea−Albaladejo J, Martín−Fernández J, Gómez−García J. 2007. A parametric approach for dealing with compositional rounded zeros[J]. Mathematical Geology, 39(7): 625−645. doi: 10.1007/s11004-007-9100-1
[24] Pan S Q, Zou C N, Yang Z, Dong D Z, Wang Y M, Wang S F, Wu S T, Huang J L, Liu Q, Wang D L, Wang Z Y. 2015. Methods for shale gas play assessment: A comparison between Silurian Longmaxi Shale and Mississippian Barnett Shale[J]. Journal of Earth Science, 26(2): 285−294. doi: 10.1007/s12583-015-0524-0
[25] Pearce T J, Martin J H, Cooper D. 2010. Chemostratigraphy of upper carboniferous (Pennsylvanian) sequences from the southern North Sea (United Kingdom)[C]//Ratcliffe K T, Zaitlin B A (ed. ). Modern Alternative Stratigraphic Techniques, Theory and Case Histories, SEPM Special Publication No. 94, 109–129.
[26] Pison G, Rousseeuw P, Filzmoser P. 2003. Robust factor analysis[J]. Journal of Multivariate Analysis, 84: 145−172. doi: 10.1016/S0047-259X(02)00007-6
[27] Posamentier H W, Vail P R. 1988. Eustatic controls on clastic deposition II — sequence and systems tract models[C]// Wilgus C K, Hastings B S, Kendall C, et al. (eds. ). Sea Level Changes — An Integrated Approach. Society of Economic Paleontologists and Mineralogists (SEPM), Special Publication, 42, 125–154.
[28] Pu Boling, Dong Dazhong, Wang Fengqin, Wang Yuman, Huang Jinliang. 2020. The effect of sedimentary facies on Longmaxi shale gas in southern Sichuan Basin[J]. Geology in China, 47(1): 111−120.
[29] Qiu Zhen, Zou Caineng, Wang Hongyan, Dong Dazhong, Lu Bin, Chen Zhenhong, Liu Dexun, Li Guizhong, He Jianglin, Wei Lin. 2019. Discussion on characteristics and controlling factors of differential enrichment of Wufeng−Longmaxi shale gas in South China[J]. Natural Gas Geoscience, 31(2): 163−175 (in Chinese with English abstract).
[30] Ramkumar M. 2015. Chemostratigraphy: Concepts, Techniques, and Applications[M]. Elsevier, 1−432.
[31] Ratcliffe K T, Wilson A, Payenberg T, Rittersbacher A, Hildred G V, Flint S S. 2015. Ground trothing chemostratigraphic correlations in fluvial systems[J]. AAPG Bulletin, 99: 155−180. doi: 10.1306/06051413120
[32] Reiman C, Filmoser P. 1999. Normal and lognormal data distribution in geochemistry: Death of a myth. Consequences for the statistical treatment of geochemical and environmental data[J]. Environmental Geology, 39: 1001−1014.
[33] Sandford R F, Pierson C T, Crovelli R A. 1993. An objective replacement method for censored geochemical data[J]. Mathematical Geology, 25(1): 59−80. doi: 10.1007/BF00890676
[34] Sano J L, Ratcliffe K T, Spain D. 2013. Chemostratigraphy of the Haynesville Shale[C]// Hammes U, Gale J (ed.). Geology of the Haynesville Gas Shale in East Texas and West Louisiana. USA: AAPG Memoir 105, 137–154.
[35] Tribovillard N, Algeo T J, Lyons T, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 232: 12−32. doi: 10.1016/j.chemgeo.2006.02.012
[36] Turgeon S, Brumsack H J. 2006. Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian–Turonian Boundary Event (Cretaceous) in the Umbria−Marche Basin of central Italy[J]. Chemical Geology, 234: 321−339. doi: 10.1016/j.chemgeo.2006.05.008
[37] Wang Tong, Yang Keming, Xiong Liang, Shi Hongliang, Zhang Quanlin, Wei Limin, He Xianli. 2015. Shale sequence stratigraphy of Wufeng−Longmaxi Formation in Southern Sichuan and their control on reservoirs[J]. Acta Petrolei Sinica, 36(8): 915−925 (in Chinese with English abstract).
[38] Wang Y M, Dong D Z, Li X J, Huang J L, Wang S F, Wu W. 2015. Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in Sichuan Basin and its peripheral areas[J]. Natural Gas Industry B, 2(2/3): 222−232.
[39] Wang Yuman, Li Xinjing, Dong Dazhong, Zhang Chenchen, Wang Shufang. 2017. Main factors controlling the sedimentation of high−quality shale in Wufeng–Longmaxi Fm, Upper Yangtze region[J]. Natural Gas Industry, 37(4): 9−20 (in Chinese with English abstract).
[40] Wedepohl K H. 1991. The composition of the upper Earth’s crust and the natural cycles of selected metals[C]//Merian E (ed.). Metals and their Compounds in the Environment. VCH−Verlagsgesellschaft, Weinheim, 3−17.
[41] Yang Ping, Wang Zhengjiang, Yu Qian, Liu Wei, Liu Jiahong, Xiong Guoqing, He Jianglin, Yang Fei. 2019. An resources potential analysis of Wufeng−Longmaxi Formation shale gas in the southwestern margin of Sichuan Basin[J]. Geology in China, 46(3): 601−614 (in Chinese with English abstract).
[42] Yu Yu, Lin Liangbiao, Lan Binheng, Hong Wei, Guo Yan. 2018. Sequence stratigraphic division and recognition based on wavelet analysis: Example from the Upper Permian Longtan Formation in eastern Sichuan Basin[J]. Northwestern Geology, 51(4): 43−52 (in Chinese with English abstract).
[43] Zhai G Y, Li J, Jiao Y, Wang Y F, Liu G H, Xu Q, Wang C, Chen R, Guo X B. 2019. Applications of chemostratigraphy in a characterization of shale gas Sedimentary Microfacies and predictions of sweet spots: Taking the Cambrian black shales in Western Hubei as an example[J]. Marine and Petroleum Geology, 109: 547−560. doi: 10.1016/j.marpetgeo.2019.06.045
[44] Zhao Quanmin, Zhang Jincheng, Liu Jinge. 2019. Status of Chinese shale gas revolution and development proposal[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 46(8): 1−9 (in Chinese with English abstract).
[45] Zheng Rongcai, Wen Huaguo, Li Fengjie. 2010. High−resolution Sequence Stratigraphy[M]. Beijing: Geological Publishing House, 1−404 (in Chinese).
[46] 程文斌, 顾雪祥, 胡修棉, 李有核, 董树义. 2008. 现代大洋红色黏土与白垩纪大洋红层元素地球化学对比[J]. 地质学报, 82(1): 37−47. doi: 10.3321/j.issn:0001-5717.2008.01.005
[47] 郭旭升. 2017. 上扬子地区五峰组−龙马溪组页岩层序地层及演化模式[J]. 地球科学, 42(7): 1069−1082.
[48] 姜振学, 宋岩, 唐相路, 李卓, 王幸蒙, 王国臻, 薛子鑫, 李鑫, 张昆, 常佳琦, 仇恒远. 2020. 中国南方海相页岩气差异富集的控制因素[J]. 石油勘探与开发, 47(3): 1−12. doi: 10.11698/PED.2020.03.18
[49] 李关清, 顾雪祥, 程文斌, 章永梅, 张岩, 代鸿章, 吕鹏瑞, 张兴国, 夏抱本. 2014, 藏南扎西康Sb−Pb−Zn−Ag多金属矿集区下侏罗统日当组赋矿地层元素地球化学特征及地质意义[J]. 矿物岩石地球化学通报, 33(5): 598−608.
[50] 李一凡, 樊太亮, 高志前, 张金川, 王小敏, 曾维特, 张俊鹏. 2012. 渝东南地区志留系黑色页岩层序地层研究[J]. 天然气地球科学, 23(2): 299−306.
[51] 梁兴, 王高成, 徐政语, 张介辉, 陈志鹏, 鲜成钢, 鲁慧丽, 刘臣, 赵春段, 熊绍云. 2016. 中国南方海相复杂山地页岩气储层甜点综合评价技术—以昭通国家级页岩气示范区为例[J]. 天然气工业, 36(1): 33−42. doi: 10.3787/j.issn.1000-0976.2016.01.004
[52] 梁兴, 张廷山, 舒红林, 闵华军, 张朝, 张磊. 2020. 滇黔北昭通示范区龙马溪组页岩气资源潜力评价[J]. 中国地质, 47(1): 72−87. doi: 10.12029/gc20200106
[53] 林畅松, 张燕梅, 刘景彦, 庞保成. 2000. 高精度层序地层学和储层预测[J]. 地学前缘, 7(3): 111−117. doi: 10.3321/j.issn:1005-2321.2000.03.012
[54] 陆扬博, 马义权, 王雨轩, 陆永潮. 2017. 上扬子地区五峰组−龙马溪组主要地质事件及岩相沉积响应[J]. 地球科学, 42(7): 1169−1184.
[55] 马新华, 谢军. 2018. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 45(1): 161−169. doi: 10.11698/PED.2018.01.18
[56] 马永生, 蔡勋育, 赵培荣. 2018. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 45(4): 561−574. doi: 10.11698/PED.2018.04.03
[57] 蒲泊伶, 董大忠, 王凤琴, 王玉满, 黄金亮. 2020. 沉积相带对川南龙马溪组页岩气富集的影响[J]. 中国地质, 47(1): 111−120. doi: 10.12029/gc20200109
[58] 邱振, 邹才能, 王红岩, 董大忠, 卢斌, 陈振宏, 刘德勋, 李贵中, 何江林, 魏琳. 2019. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素探讨[J]. 天然气地球科学, 31(2): 163−175.
[59] 王同, 杨克明, 熊亮, 史洪亮, 张全林, 魏力民, 何显莉. 2015. 川南地区五峰组−龙马溪组页岩层序地层及其对储层的控制[J]. 石油学报, 36(8): 915−925. doi: 10.7623/syxb201508003
[60] 王玉满, 李新景, 董大忠, 张晨晨, 王淑芳. 2017. 上扬子地区五峰组—龙马溪组优质页岩沉积主控因素[J]. 天然气工业, 37(4): 9−20. doi: 10.3787/j.issn.1000-0976.2017.04.002
[61] 杨平, 汪正江, 余谦, 刘伟, 刘家洪, 熊国庆, 何江林, 杨菲. 2019. 四川盆地西南缘五峰—龙马溪组页岩气资源潜力分析[J]. 中国地质, 46(3): 601−614. doi: 10.12029/gc20190311
[62] 余瑜, 林良彪, 蓝彬桓, 洪薇, 郭炎. 2018. 基于小波分析的层序地层划分及识别—以川东地区上二叠统龙潭组为例[J]. 西北地质, 51(4): 43−52. doi: 10.3969/j.issn.1009-6248.2018.04.006
[63] 赵全民, 张金成, 刘劲歌. 2019. 中国页岩气革命现状与发展建议[J]. 探矿工程(岩土钻掘工程), 46(8): 1−9.
[64] 郑荣才, 文华国, 李凤杰. 2010. 高分辨率层序地层学[M]. 北京: 地质出版社, 1−404.
-