U–Pb isotopic age of Longwangdong ophiolitic mélange in the Tianshui Area, West Qinling Orogenic Belt and its time limit of subduction–collision
-
摘要:
研究目的 西秦岭天水地区龙王洞蛇绿混杂岩是一套典型的蛇绿岩体,是秦岭商丹缝合带西延的重要证据,对其进行岩石学、年代学和地球化学的研究有助于更好地理解该地区的构造演化过程。
研究方法 本文通过岩石学、全岩地球化学对该套蛇绿岩进行分析,确定其主要由变辉长岩、变玄武岩、辉石岩等组成。
研究结果 通过LA–ICP–MS锆石微区原位U–Pb同位素测年,获得变辉长岩的206Pb/238U加权平均年龄为(474.6±6.7)Ma,指示该蛇绿混杂岩形成于早奥陶世。岩石地球化学分析表明,变玄武岩属于高钛、富镁、富铁、拉斑系列;稀土元素分布模式呈现稀土总量偏低、Eu负异常不明显的平坦型曲线;微量元素分布模式为Cs、Th和Nb相对亏损的平坦型曲线,Zr/Nb比值低,总体表现出与E–MORB相似的特征。
结论 变玄武岩地球化学特征指示龙王洞蛇绿混杂岩可能形成于岛弧区拉张环境,结合区域资料进一步认为其形成于俯冲带上弧后盆地环境,进一步暗示了西秦岭天水地区在早奥陶世处于商丹洋的大洋俯冲构造背景。
Abstract:This paper is the result of geological survey engineering.
Objective The newly discovered Longwangdong ophiolitic mélange as a typical ophiolite suit in the Tianshui area of West Qinling Orogenic Belt witnessed the westward extension of Shangdan suture zone in Qinling Orogenic Belt. Studying its petrology, geochronology, and geochemistry will help improve our understanding of the tectonic evolution of this region.
Methods This study demonstrates through petrological and whole−rock geochemical analyses that this ophiolite suite is mainly composed of amphibolite, metamorphosed basalt, and pyroxenite.
Results LA–ICP–MS zircon U–Pb dating shows the meta−gabbro was formed at (474.6±6.7) Ma, constraining the formation time of the mélange. The whole−rock geochemical analysis reveals that the meta−basalts are subalkalic tholeiite in composition and rich in Ti, Mg and Fe. The total REE of the meta−basalts are low and characterized by flat type distribution pattern without obvious Eu anomalies. Their trace element distribution yields flat patterns with negative anomalies of Cs, Th, Nb, and lowed Zr/Nb ratios, consistent with that of the E−MORB.
Conclusions The geochemical features of the meta−basalts suggest the Longwangdong ophiolitic mélange was potentially generated in the extended volcanic arc environment, which was considered to be the back−arc basin based on the regional geological data. It further implies that Shangdan Ocean experienced a period of subduction process in the Early Ordovician in the West Qinling region.
-
-
图 5 西秦岭天水地区龙王洞蛇绿混杂岩中变玄武岩Nb/Y–Zr/TiO2(a, 据Winchester and Floyd, 1977)和SiO2–TFeO/MgO(b, 据Miyashiro, 1975)图解
Figure 5.
图 6 西秦岭天水地区龙王洞蛇绿混杂岩中变玄武岩稀土元素球粒陨石标准化分布模式(a)和微量元素原始地幔标准化分布模式(b)(标准化值据Sun and McDonoungh, 1989)
Figure 6.
图 7 西秦岭天水地区龙王洞蛇绿混杂岩中变玄武岩Zr/Y–Zr、Ti–Zr–Y和Ti–Zr(据Pearce and Cann, 1973)图解
Figure 7.
表 1 西秦岭天水地区龙王洞蛇绿混杂岩带中变辉长岩(18LW-14)LA–ICP–MS单颗粒锆石U–Pb同位素测年结果
Table 1. LA–ICP–MS zircon U–Pb isotopic analyses of meta–gabbro in the Longwangdong ophiolitic mélange in Tianshui area, West Qinling Orogenic Belt
样号 同位素比值 同位素年龄/Ma 含量/10−6 Th/U 谐和度/% 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ Th U Pb∗ 18LW-14-3 0.0582 0.0021 0.6151 0.0223 0.0767 0.0012 536 51 487 14 476 7 10.84 93.81 70.79 0.12 102 18LW-14-7 0.0569 0.0016 0.6048 0.0179 0.0771 0.0012 488 39 480 11 479 7 287.57 459.2 41.23 0.63 100 18LW-14-16 0.0583 0.0037 0.6145 0.0387 0.0764 0.0016 541 102 486 24 475 9 73.88 172.68 14.51 0.43 102 18LW-14-25 0.0583 0.0039 0.6112 0.0403 0.0760 0.0016 541 108 484 25 472 9 114.52 169.65 15.03 0.68 103 18LW-14-30 0.059 0.0016 0.6191 0.0173 0.0757 0.0011 579 35 489 11 470 7 608.23 680.6 64.03 0.89 104 注:Pb∗=0.241×206Pb+0.221×207Pb+0.524×208Pb;谐和度=(207Pb/235U)/(206Pb/238U)×100。 表 2 西秦岭天水地区龙王洞蛇绿混杂岩带中变玄武岩主量(%)、微量和稀土元素含量(10−6)
Table 2. Major (%), REE and trace element (10−6) composition of meta−basalts in the Longwangdong ophiolitic mélange in Tianshui area, West Qinling Orogenic Belt
样号 18-LW-2 18-LW-3 18-LW-4 18-LW-5 18-LW-6 18-LW-7 18-LW-9 18-LW-10 18-LW-11 18-LW-12 岩性 变玄武岩 变玄武岩 变玄武岩 变玄武岩 变玄武岩 变玄武岩 变玄武岩 变玄武岩 变玄武岩 变玄武岩 SiO2 47.03 44.58 49.27 49.08 48.86 47.13 47.40 48.24 49.18 47.04 TiO2 0.76 1.09 0.85 0.89 0.90 0.86 0.86 0.71 0.60 1.09 Al2O3 12.77 14.82 16.31 16.50 17.63 15.35 14.58 16.59 17.84 18.25 Fe2O3 4.58 6.39 4.61 6.59 3.64 4.67 2.83 2.92 3.06 3.22 FeO 7.55 6.78 5.45 5.15 5.58 6.00 8.10 6.70 6.19 7.10 MnO 0.24 0.45 0.28 0.19 0.21 0.20 0.19 0.18 0.22 0.17 MgO 9.12 5.58 5.49 4.66 5.97 6.06 9.18 6.84 6.90 8.15 CaO 12.54 9.87 8.74 9.92 7.26 10.10 8.83 9.05 7.87 7.78 Na2O 0.72 3.02 4.39 3.96 4.64 3.48 1.66 3.25 3.70 3.48 K2O 0.37 0.62 0.68 0.64 1.10 0.74 2.48 1.51 0.84 0.36 P2O5 0.06 0.19 0.14 0.12 0.19 0.22 0.12 0.11 0.11 0.16 LOI 4.04 6.39 3.61 2.12 3.88 5.07 3.51 3.69 3.34 3.02 TFeO 11.67 12.53 9.60 11.08 8.86 10.20 10.65 9.33 8.94 10.00 Total 99.78 99.78 99.82 99.82 99.86 99.88 99.74 99.79 99.85 99.82 La 3.15 5.30 6.02 8.10 6.25 20.0 5.55 5.62 5.29 7.51 Ce 9.25 13.1 13.8 17.0 14.8 56.2 13.2 12.6 11.4 18.5 Pr 1.64 2.52 2.66 2.84 2.65 6.79 2.28 2.21 2.00 3.06 Nd 8.49 12.5 12.4 12.7 13.4 25.1 11.4 10.1 8.71 14.2 Sm 2.22 3.54 3.35 2.96 3.52 5.42 3.09 2.60 2.22 3.28 Eu 0.741 1.20 1.12 0.988 1.08 1.41 1.05 0.901 0.712 1.04 Gd 2.34 3.71 3.53 2.82 3.72 4.91 3.29 2.72 2.22 3.33 Tb 0.431 0.642 0.635 0.464 0.659 0.768 0.579 0.471 0.400 0.572 Dy 2.81 4.38 4.20 2.89 4.44 4.48 3.75 3.06 2.71 3.51 Ho 0.605 0.953 0.929 0.593 0.977 0.912 0.797 0.675 0.598 0.731 Er 1.71 2.64 2.62 1.62 2.81 2.68 2.28 1.91 1.75 2.00 Tm 0.265 0.405 0.421 0.241 0.451 0.398 0.356 0.294 0.278 0.312 Yb 1.71 2.68 2.76 1.52 2.93 2.58 2.34 1.93 1.84 1.99 Lu 0.262 0.412 0.420 0.231 0.461 0.381 0.357 0.288 0.278 0.300 LREE 25.49 38.16 39.35 44.59 41.70 114.92 36.57 34.03 30.33 47.59 HREE 10.13 15.82 15.52 10.38 16.45 17.11 13.75 11.35 10.07 12.75 ΣREE 35.62 53.98 54.87 54.97 58.15 132.03 50.32 45.38 40.41 60.34 (La/Sm)N 0.89 0.94 1.13 1.72 1.12 2.32 1.13 1.36 1.50 1.44 (La/Yb)N 1.24 1.33 1.47 3.59 1.44 5.23 1.60 1.96 1.94 2.54 δEu 0.99 1.01 0.99 1.03 0.91 0.82 1.00 1.03 0.97 0.95 Ba 108 150 219 316 221 215 445 1210 254 182 Rb 9.39 10.0 9.35 7.42 12.5 15.7 32.1 21.4 9.22 4.54 Sr 569 362 488 752 449 640 186 376 357 646 Co 63.2 45.7 40.7 35.0 27.9 41.9 47.2 41.0 29.7 34.7 V 478 396 421 476 310 393 398 360 314 449 Cr 586 59.0 255 25.0 128 52.3 170 142 137 30.5 Ni 156 27.0 62.2 11.5 35.6 30.6 48.0 45.6 55.2 17.0 Nb 1.77 3.40 2.78 2.37 3.46 2.75 2.46 2.12 1.55 2.93 Ta 0.151 0.236 0.200 0.154 0.232 0.180 0.173 0.149 0.109 0.188 Zr 23.8 55.2 51.5 30.1 68.3 57.8 50.9 41.8 29.4 47.9 Hf 0.880 1.72 1.76 1.07 2.02 1.82 1.70 1.37 1.02 1.62 Y 15.6 24.4 22.9 14.8 24.4 23.8 20.8 16.7 14.9 18.3 Cs 0.220 0.565 0.430 0.210 0.460 1.16 0.690 0.590 0.475 0.260 Th 1.27 1.16 1.56 3.49 1.83 14.3 2.36 2.51 2.03 3.06 U 0.338 1.66 0.463 0.749 0.831 2.09 0.448 0.531 0.433 0.500 Pb 8.89 29.4 4.73 9.71 5.21 10.7 7.31 29.5 3.20 22.6 Li 15.3 22.7 16.3 11.0 23.5 21.9 26.0 13.3 13.0 21.5 Be 0.257 0.502 0.688 0.665 0.482 0.542 0.472 0.812 0.302 0.660 Sc 48.4 37.6 36.5 36.1 29.7 32.8 41.1 34.4 28.1 40.0 Ga 14.7 14.6 16.4 18.4 14.1 17.5 15.3 15.8 13.2 16.8 Ti 4580 6560 5080 5320 5400 5140 5180 4240 3630 6520 -
[1] Andersen T. 2002. Correction of common lead in U−Pb analyses that do not report 204Pb[J]. Chemical Geology, 192(1/2): 59−79.
[2] Bai Zhi’an, Shi Yu, Liu Xijun, Liu Lei, Zhao Zengxia, Huang Qianwen. 2020. Geochronology and geochemical characteristics of the amphibolite from the Qinling Group of Qinling orogenic belt and their geological implications[J]. Geology and Exploration, 56(2): 372−386 (in Chinese with English abstract).
[3] Cao Yusen, Huang Shiqi, Zhou Weijian, Lu Yang, Liu Zhiqiang, Huang Dezhi. 2020. Geochemical characteristics and tectonic environment of meta basalts in Guanzizhen, Tianshui, western Qinling[J]. Geological Review, 66(3): 625−636 (in Chinese with English abstract).
[4] Chen Junlu, Xu Xueyi, Wang Hongliang, Wang Zongqi, Zeng Zuoxun, Li Ping, Wang Chao. 2008. Geochemical characteristics and petrogenesis of Early Paleozoic adakitic rock in the west segment of North Qingling[J]. Acta Geologica Sinica, 82(4): 476−484 (in Chinese with English abstract).
[5] Coleman R G, Keith T E. 1971. A chemical study of serpentinization−Burro Mountain, California[J]. Journal of Petrology, 12: 311−328. doi: 10.1093/petrology/12.2.311
[6] Dewey J F, Bird J. 1971. Origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland[J]. Journal of Geophysical Research, 76: 3179−3206. doi: 10.1029/JB076i014p03179
[7] Dilek Y, Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Geological Society of America Bulletin, 123(3/4): 387−411.
[8] Dong Y P, Neubauer F, Genser J, Sun S S, Yang Z Q, Liu X M, Zhang G W. 2018. Timing of orogenic exhumation processes of the Qinling orogen: Evidence from 40Ar/39Ar dating[J]. Tectonics, 37: 4037−4067. doi: 10.1029/2017TC004765
[9] Dong Y P, Santosh M, 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 29: 1–40.
[10] Dong Yunpeng, Yang Zhao, Zhang Guowei, Zhao Xia, Xu Jinggang, Yao Anping. 2008. Geochemistry of the ophiolite in the Guanzizhen area, West Qinling and its tectonic implications[J]. Acta Geologica Sinica, 82(9): 1186−1194 (in Chinese with English abstract).
[11] Feng Yimin. 1986. Genetic environments and original types of ophiolites in west Junggar[J]. Bulletin of the Xi’an Institute of Geology and Mineral Resources, the Chinese Academy of Geological Sciences, (13): 37–44 (in Chinese).
[12] Furnes H, Safonova I. 2019. Ophiolites of the Central Asian Orogenic Belt: Geochemical and petrological characterization and tectonic settings[J]. Geoscience Frontiers, 10: 1255−1284. doi: 10.1016/j.gsf.2018.12.007
[13] Gass I G. 1968. Is the Troodos massif of Cyprus a fragment of Mesozoic oceanic floor?[J]. Nature, 220: 39−42. doi: 10.1038/220039a0
[14] Graham I T, Franklin B J, Marshall B. 1996. Tectonic significance of 400 Ma zircon ages for ophiolitic rocks from the Lachlan fold belt[J]. Geology, 24(12): 1111−1114.
[15] Gu Pingyang, Li Yongjun, Wang Xiaogang, Zhang Hongwei, Wang Junnian. 2011. Geochemical evidences and tectonic significances of Dalabute SSZ−type Ophiolitic Mélange, Western Junggar Basin[J]. Geological Review, 57(1): 36–44 (in Chinese with English abstract).
[16] Gu Pingyang, Li Yongjun, Zhang Bin, Tong Lili, Wang Junnian. 2009. LA−ICP−MS zircon U−Pb dating of gabbro in the Darbut ophiolite, western Junggar, China[J]. Acta Petrologica Sinica, 25(6): 1364−1372 (in Chinese with English abstract).
[17] Kidd R G W. 1977. A model for the process of formation of the upper oceanic crust[J]. Geophysical Journal of the Royal Astronomical Society, 50: 149−183.
[18] Li Wangye, Li Shuguang, Pei Xianzhi, Zhang Guowei. 2007. Geochemistry and zircon SHRIMP U−Pb ages of the Guanzizhen ophiolite complex, the Western Qinling Orogen, China[J]. Acta Petrologica Sinica, 23(11): 2836−2844 (in Chinese with English abstract).
[19] Li Y, Yang J S, Yildirim D, Zhang J, Pei X Z, Chen S Y, Xu X Z, Li J Y. 2015. Crustal architecture of the Shangdan suture zone in the early Paleozoic Qinling orogenic belt, China: Record of subduction initiation and back arc basin development[J]. Gondwana Research, 27: 733−744. doi: 10.1016/j.gr.2014.03.006
[20] Li Yanguang, Wang Shuangshuang, Liu Minwu, Meng En, Wei Xiaoyan, Zhao Huibo, Jin Mengqi. 2015. U−Pb dating study of baddeleyite by LA−ICP−MS: Technique and application[J]. Acta Geologica Sinica, 89(12): 2400−2418 (in Chinese with English abstract).
[21] Ludwig K R. 2003. Isoplot 3.0: A geochronological toolkit for microsoft excel[J]. Berkeley Geochronology Center Special Publication, (4): 1−70.
[22] Miyashiro A. 1975. Classification, characteristics, and origin of ophiolites[J]. Journal of Geology, 83(2): 249−281. doi: 10.1086/628085
[23] Moores E M, Jackson E D. 1974. Ophiolites and oceanic crust[J]. Nature, 250(5462): 136−139. doi: 10.1038/250136a0
[24] Moores E M, Vine F J. 1971. The Troodos massif, Cyprus and other ophiolites as oceanic crust: Evaluation and implications[J]. Royal Society, A268: 433−466.
[25] Pearce J A, Lippard S J, Roberts S. 1984. Characteristics and tectonic significance of supra−subduction zone ophiolites[C]//Kokelaar B P and Howells M F (eds. ). Marginal Basin Geology. London: Special Publication, 77–94.
[26] Pearce J A, Cann J R. 1973. Tectonic setting of basic volcanic rocks determined using trace elements analyses[J]. Earth and Planetary Science Letters, 19(2): 290−300.
[27] Pei Xianzhi, Ding Saping, Hu Bo, Li Yong, Zhang Guowei, Guo Junfeng. 2004. Definition of the Guanzizhen ophiolite in Tianshui area, Western Qinling, and its geological significance[J]. Geological Bulletin of China. 23(12): 1202–1208 (in Chinese with English abstract).
[28] Pei Xianzhi, Ding Saping, Li Zuochen, Liu Zhanqing, Li Gaoyang, Li Ruibao, Wang Fei, Li Fujie. 2007. LA−ICP−MS zircon U−Pb dating of the gabbro from the Guanzizhen ophiolite in the northen margin of the Western Qinling and its geological significance[J]. Acta Geologica Sinica, 81(11): 1550−1561 (in Chinese with English abstract).
[29] Pei Xianzhi, Li Yong, Lu Songnian, Chen Zhihong, Ding Saping, Hu Bo, Li Zuochen, Liu Hhuibin. 2005. U−Pb ages of the Guanzizhen inter−mediate−basic igneous complex in Tianshui area, West Qinling, and their geological significance[J]. Geological Bulletin of China, 24(1): 23−29 (in Chinese with English abstract).
[30] Prinzhofer A, Allègre C J. 1985. Residual peridotites and the mechanisms of partial melting[J]. Earth and Planetary Science Letters, 74(2/3): 251−265.
[31] Robertson A H F. 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region[J]. Lithos, 65(1): 1−67.
[32] Shi Rendeng. 2005. Comment on the progress in and problems on ophiolite study[J]. Geological Review, 51(6): 681−693 (in Chinese with English abstract).
[33] Shi Rendeng. 2007. SHRIMP dating of the Bangong Lake SSZ−type ophiolite: Constraints on the closure time of ocean in the Bangong Lake−Nujiang River, Northwestern Tibet[J]. Chinese Science Bulletin, 52(7): 936−941 (in Chinese with English abstract).
[34] Song, S G, Yang, L M, Zhang, Y Q, Niu, Y L, Wang, C, Su, L, Gao, Y L. 2017. Qi–Qin accretionary belt in Central China Orogen: Accretion by trench jam of oceanic plateau and formation of intra−oceanic arc in the Early Paleozoic Qin–Qi–Kun Ocean[J]. Science Bulletin, 62: 1035−1038. doi: 10.1016/j.scib.2017.07.009
[35] Stern R I, Bloomer S H. 1989. Submarine are volcanism in the southern Mariana arc as an ophiolite analogue[J]. Tectonophysics, 168: 151−170. doi: 10.1016/0040-1951(89)90374-0
[36] Stern R J, Reagan M, Ishizuka O, Ohara Y, Whattam S. 2012. To understand subduction initiation, study forearc crust: To understand forearc crust, study ophiolites[J]. Lithosphere, 4: 469−483. doi: 10.1130/L183.1
[37] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalt: Implication for mantle composition and processes, in magmatism in the Ocean Basins[J]. Geological Society London Special Publication, 423: 13−345.
[38] Wang Xibin, Bao Peisheng, Rong He. 1995. Rare earth elements geochemistry of the mantle peridotite in the ophiolite suites of China[J]. Acta Petrologica Sinica, 11: 24−41 (in Chinese with English abstract).
[39] Wang Xibin, Hao Ziguo. 1994. Temporal−spatial distribution and tectonic types of ophiolites in orogenic belts of China[J]. Regional Geology of China, 3: 193−204 (in Chinese with English abstract).
[40] Whattam S A, Stern R J. 2011. The ‘subduction initiation rule’: A key for linking ophiolites, intra−oceanic forearcs and subduction initiation[J]. Contributions to Mineralogy & Petrology, 162(5): 1031−1045.
[41] Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation of products using immobile elements[J]. Chemical Geology, 20: 325−343.
[42] Xu Deming, Huang Guicheng, Lei Yijun. 2008. Geochemistry and tectonic significance of mantle peridotites from the Laangcuo ophiolite massif, southwest Tibet[J]. Acta Petrologica et Mineralogica, 27(1): 1−13 (in Chinese with English abstract).
[43] Yang G X, Li Y J, Tong L L, Wang Z P. 2020. An Early Cambrian plume−induced subduction initiation event within the Junggar Ocean: Insights from ophiolitic mélanges, arc magmatism, and metamorphic rocks[J]. Gondwana Research, 88: 45−66. doi: 10.1016/j.gr.2020.07.002
[44] Yang G X, Li Y J, Xiao W J, Tong L L. 2015. OIB−type rocks within West Junggar ophiolitic mélanges: Evidence for the accretion of seamounts[J]. Earth Science Reviews, 150: 477−496. doi: 10.1016/j.earscirev.2015.09.002
[45] Yang Zhao, Dong Yunpeng, Liu Xiaomin, Zhang Jinhai. 2006. LA−ICP−MS zircon U−Pb dating of gabbro in the Guanzizhen ophiolite, Tianshui, West Qinling, China[J]. Geological Bulletin of China, 25(11): 1321−1325 (in Chinese with English abstract).
[46] Yuan Honglin, Wu Fuyuan, Gao Shan, Liu Xiaoming, Xu Ping, Sun Deyou. 2003. Zircon laser probe U−Pb age determination and REE component analysis of Cenozoic magmatic intrusion in Northeast China[J]. Chinese Science Bulletin, 48(14): 1511−1520 (in Chinese with English abstract). doi: 10.1360/csb2003-48-14-1511
[47] Zhang Guowei, Yuan Xuecheng, Zhang Benren. 2001. Qinling Orogenic Belt and Continental Dynamics[M]. Beijing: Science Press, 1–855 (in Chinese with English abstract).
[48] Zhang Qi, Zhang Zongqin, Sun Yong, Han Song. 1995. Trace element and isotopic geochemistry of meta basalts from Danfeng Group in Shanxian−Danfeng area, Shaanxi Province[J]. Acta Petrologica Sinica, 11(1): 43−54 (in Chinese with English abstract).
[49] Zhang Zongqin, Zhang Guowei, Liu Dunyi, Wang Zongqi, Tang Suohan, Wang Jinhui. 2006. Isotopic Geochronology and Geochemistry of Ophiolites, Granites and Clastic Sedimentary Rocks in the Qinling Orogenic Belt[M]. Beijing: Geological Publishing House, 9–55 (in Chinese with English abstract).
[50] Zhao Ruyi, Jiang Changyi, Li Weihong, Wang Jiangbo, Wang Bangyao, Hui Zhenbu. 2015. LA−ICP−MS zircon U−Pb dating, petro−geochemical characteristics and geological significance of Fenshuiling ophiolite in Danfeng area of eastern Qinling Mountains[J]. Acta Geoscientica Sinica, 36(4): 473−482 (in Chinese with English abstract).
[51] 柏治安, 时毓, 刘希军, 刘磊, 赵增霞, 黄倩雯. 2020. 秦岭造山带秦岭岩群斜长角闪岩的年代学、地球化学特征及其地质意义[J]. 地质与勘探, 56(2): 372−386. doi: 10.12134/j.dzykt.2020.02.012
[52] 操雨森, 黄始琪, 周炜鉴, 卢洋, 刘志强, 黄德志. 2020. 西秦岭天水关子镇变玄武岩的地球化学特征及大地构造环境[J]. 地质论评, 66(3): 625−636.
[53] 陈隽璐, 徐学义, 王洪亮, 王宗起, 曾佐勋, 李平, 王超. 2008. 北秦岭西段早古生代埃达克岩地球化学特征及岩石成因[J]. 地质学报, 82(4): 475−484. doi: 10.3321/j.issn:0001-5717.2008.04.005
[54] 董云鹏, 杨钊, 张国伟, 赵霞, 徐静刚, 姚安平. 2008. 西秦岭关子镇蛇绿岩地球化学及其大地构造意义[J]. 地质学报, 82(9): 1186−1194. doi: 10.3321/j.issn:0001-5717.2008.09.004
[55] 冯益民. 1986. 西准噶尔蛇绿岩生成环境及其成因类型[J]. 中国科学院西安地质矿产研究所所刊, (13): 37−44.
[56] 辜平阳, 李永军, 王晓刚, 张洪伟, 王军年. 2011. 西准噶尔达尔布特SSZ型蛇绿杂岩的地球化学证据及构造意义[J]. 地质论评, 57(1): 36−44.
[57] 辜平阳, 李永军, 张兵, 佟丽莉, 王军年. 2009. 西准达尔布特蛇绿岩中辉长岩LA−ICP−MS锆石U−Pb测年[J]. 岩石学报, 25(6): 1364−1372.
[58] 李王晔, 李曙光, 裴先治, 张国伟. 2007. 西秦岭关子镇蛇绿混杂岩的地球化学和锆石SHRIMP U−Pb年龄[J]. 岩石学报, 23(11): 2836−2844. doi: 10.3969/j.issn.1000-0569.2007.11.014
[59] 李艳广, 汪双双, 刘民武, 孟恩, 魏小燕, 赵慧博, 靳梦琪. 2015. 斜锆石LA−ICP−MS U−Pb定年方法及应用[J]. 地质学报, 89(12): 2400−2418. doi: 10.3969/j.issn.0001-5717.2015.12.015
[60] 裴先治, 丁仨平, 胡波, 李勇, 张国伟, 郭军锋. 2004. 西秦岭天水地区关子镇蛇绿岩的厘定及其地质意义[J]. 地质通报, 23(12): 1202−1208. doi: 10.3969/j.issn.1671-2552.2004.12.006
[61] 裴先治, 丁仨平, 李佐臣, 刘战庆, 李高阳, 李瑞保, 王飞, 李夫杰. 2007. 西秦岭北缘关子镇蛇绿岩的形成时代: 来自辉长岩中LA−ICP−MS锆石U−Pb年龄的证据[J]. 地质学报, 81(11): 1550−1561. doi: 10.3321/j.issn:0001-5717.2007.11.010
[62] 裴先治, 李勇, 陆松年, 陈志宏, 丁仨平, 胡波, 李佐臣, 刘会彬. 2005. 西秦岭天水地区关子镇中基性岩浆杂岩体锆石U−Pb年龄及其地质意义[J]. 地质通报, 24(1): 23−29. doi: 10.3969/j.issn.1671-2552.2005.01.004
[63] 史仁灯. 2005. 蛇绿岩研究进展、存在问题及思考[J]. 地质论评, 5l(6): 681−693. doi: 10.3321/j.issn:0371-5736.2005.06.010
[64] 史仁灯. 2007. 班公湖SSZ型蛇绿岩年龄对班—怒洋时限的制约[J]. 科学通报, 52(2): 223−227. doi: 10.3321/j.issn:0023-074X.2007.02.016
[65] 王希斌, 鲍佩声, 戎合. 1995. 中国蛇绿岩中变质橄榄岩的稀土元素地球化学[J]. 岩石学报, 11(S1): 24−41. doi: 10.3321/j.issn:1000-0569.1995.z1.003
[66] 王希斌, 郝梓国. 1994. 中国造山带蛇绿岩的时空分布及构造类型[J]. 中国区域地质, (3): 193−204.
[67] 徐德明, 黄圭成, 雷义均. 2008. 西藏西南部拉昂错地幔橄榄岩的地球化学特征及其构造意义[J]. 岩石矿物学杂志, 27(1): 1−13. doi: 10.3969/j.issn.1000-6524.2008.01.001
[68] 杨钊, 董云鹏, 柳小明, 张津海. 2006. 西秦岭关子镇蛇绿岩锆石LA−ICP−MS U−Pb定年[J]. 地质通报, 25(11): 1321−1325. doi: 10.3969/j.issn.1671-2552.2006.11.012
[69] 袁洪林, 吴福元, 高山, 柳小明, 徐平, 孙德有. 2003. 东北地区新生代侵入体的锆石激光探针U−Pb年龄测定与稀土元素成分分析[J]. 科学通报, 48(14): 1511−1520. doi: 10.3321/j.issn:0023-074X.2003.14.008
[70] 张国伟, 袁学诚, 张本仁. 2001. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 1–855.
[71] 张旗, 张宗清, 孙勇, 韩松. 1995. 陕西商县丹凤地区丹凤群变质玄武岩的微量元素和同位素地球化学[J]. 岩石学报, 11(1): 43−54. doi: 10.3321/j.issn:1000-0569.1995.01.005
[72] 张宗清, 张国伟, 刘敦一, 王宗起, 唐索寒, 王进辉. 2006. 秦岭造山带蛇绿岩、花岗岩和碎屑沉积岩同位素年代学和地球化学[M]. 北京: 地质出版社, 9–55.
[73] 赵如意, 姜常义, 李卫红, 王江波, 汪帮耀, 惠争卜. 2015. 东秦岭丹凤地区分水岭蛇绿岩LA−ICP−MS锆石U−Pb年龄、岩石地球化学特征及其构造意义[J]. 地球学报, 36(4): 473−482. doi: 10.3975/cagsb.2015.04.10
-