-
摘要:
碳中和是当前世界关注的热点,地球科学可以在其中发挥很大的作用。在国际上,政府间气候变化专门委员会、国际能源署、能源转型委员会,以及在国家层面,政策咨询小组已就CO2减排可能的实现方式提出了一系列模型和预测情景,表明要实现碳中和,电将代替化石燃料成为全球能源的主要载体。在全球迫切需要减排的背景下,地球科学为实现《巴黎协定》气候目标提供地质解决方案至关重要,主要科学问题涉及:储热与地热;干热岩;水电储能;压缩空气储能;核能;碳捕集与储存;氢经济;能源转型需要的矿产原材料。这就需要地球科学:一是对岩石进行地球化学和地质体的岩石力学特征描述,以便在可能开展脱碳的地区储存CO2和建立绿色能源系统;二是进一步揭示电动汽车电池和风力涡轮机等所需矿产资源的起源和成因;三是从小型实验室尺度扩大到试点、工业化和商业化全尺度规模;四是要了解公众对地下脱碳技术的态度,保证项目安全性。碳中和目标为地球科学研究提供了新的机遇,未来发展需要从多方面提供支持;提高对地球科学在实现脱碳方面关键作用的认识,并发展技术,打造产业链,实现可持续发展。
Abstract:Carbon neutralization is a hot topic in the world, and geoscience can play an important role in this field. Internationally, the Intergovernmental Panel on Climate Change, the International Energy Agency, the Energy Transition Commission, and policy advisory groups at the national level have proposed a series of models and scenarios for possible ways to reduce CO2 emissions, indicating that to achieve carbon neutrality, electricity will replace fossil fuels as the main carrier of global energy. In the context of global urgent need for CO2 emission reduction, it is very important for geosciences to provide geological solutions to achieve the climate objectives of the Paris Agreement. Carbon dioxide emission reduction involves many scientific issues, including heat storage and geothermal, dry hot rock, hydropower energy storage, compressed air energy storage, nuclear energy, carbon capture and storage, hydrogen economy and mineral raw materials for energy transformation. Earth science can help reducing carbon dioxide emissions through the following ways: first, to describe the rock mechanics characteristics of geological body, so as to store CO2 and establish green energy system in the decarbonization area; secondly, to further reveal the origin and genesis of the mineral resources needed for electric vehicle batteries and wind turbines; thirdly, to expand the scale from small laboratory to pilot, industrialization and commercialization; and fourthly, to understand the public's attitude towards underground decarbonization technology to ensure the safety of the project. The goal of carbon neutralization provides new opportunities for geoscience research, and the future development needs support from various aspects. Achieving carbon neutrality requires improving awareness of the key role of geoscience in achieving decarbonization, developing technologies, building industrial chains, and achieving sustainable development.
-
-
图 2 IPCC提出的4个模型路径(据IPCC,2018)
Figure 2.
图 3 能源转型委员会(2017年)4个转型战略(据Lindsay Delevingne et al., 2020)
Figure 3.
图 5 储存场地的地质特征(据Phil Ringrose,2019)
Figure 5.
表 1 联合国可持续发展目标到2030年的目标和指标
Table 1. The 2030 goals and targets of the United Nations Sustainable Development Goals (SDGs)
-
Benjamin K, Sovacool, Saleem H, Ali Morgan Bazilian, Ben Radley, Benoit Nemery, Julia Okatz, Dustin Mulvaney. 2020. Sustainable minerals and metals for a low-carbon future[J]. Science, 367(6473): 30-33. doi: 10.1126/science.aaz6003
Brad Page, Guloren Turan, Alex Zapantis. 2019. Global Status of CCS 2019[R]. Melbourne: Global Carbon Capture and Storage Institute Ltd.
Carbon Brief. 2015. Nuclear power additions 'need to quadruple' to hit climate goals, IEA says[EB/OL]. [2015-01-31]. https://www.carbonbrief.org/nuclear-power-additions-need-to-quadruple-to-hit-climate-goals-iea-says.
China Petrochemical News. 2019. Definition and resources of dry hot rock[EB/OL]. [2019-12-23]. http://202.149.227.159/zgshb/html/2019-12/23/content_841175.htm?div=-1.
CHUNENG. BJX. COM. CN. 2016. How many of the world's top ten pumped storage power stations do you know?[EB/OL]. [2016-01-22]. http://chuneng.bjx.com.cn/news/20160122/703734.shtml.
Committee on Climate Change. 2019. Net Zero: The UK's Contribution to Stopping Global Warming[R]. London: Committee on Climate Change.
Energy Transitions Commission. 2017. Better Energy, Greater Prosperity Achievable Pathways to Low-carbon Energy Systems[R]. Energy Transitions Commission.
ESA. 2021 Variable Speed Pumped Hydroelectric Storage[EB/OL]. [2021-02-01]. http://energystorage.org/why-energy-storage/technologies/variable-speed-pumped-hydroelectric-storage/.
Gibbins J, Chalmers H. 2008. Carbon capture and storage[J]. Energy Policy, 36: 4317-4322. doi: 10.1016/j.enpol.2008.09.058
Goldthau A, Westphal K, Bazilian M, Bradshaw M. 2019. Model and manage the changing geopolitics of energy[J]. Nature, 569: 29-31. doi: 10.1038/d41586-019-01312-5
Helen Mountford. 2020. Responding to Coronavirus: Low-carbon Investments Can Help Economies Recover. [EB/OL]. [2020-03-12]. https://www.wri.org/blog/2020/03/coronavirus-economy-low-carbon-investments.
He Wei, Dooner Mark, King Marcus, Li Dacheng, Guo Songshan, Wang Jihong. 2021. Techno-economic analysis of bulk-scale compressed air energy storage in power system decarbonisation[J]. Applied Energy, 282(PA): 1-15. http://www.sciencedirect.com/science/article/pii/S0306261920315208
IEA. 2020. CCUS in Clean Energy Transitions[EB/OL]. [2020-09-01]. https://www.iea.org/reports/ccus-in-clean-energy-transitions/a-new-era-for-ccus#abstract.
IEA. 2018. World Energy Outlook 2018[R]. Paris: International Energy Agency.
IPCC. 2018. Summary for policymakers//Masson-Delmotte V, Zhai P. (eds.). Global Warming of 1.5℃. An IPCC Special Report on the Impacts of Global Warming of 1.5℃ Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty[R]. Geneva: World Meteorological Organization.
IRENA. 2019. Global Energy Transformation: A Roadmap to 2050[R]. Abu Dhabi: International Renewable Energy Agency.
Johannes Friedrich, Thomas Damassa, Mengpin Ge. 2015. What Will Future Emissions Look Like?[EB/OL]. [2015-03-09]. https://www.wri.org/blog/2015/03/what-will-future-emissions-look.
Jose M Bermudez, Taku Hasegawa. 2020. Hydrogen: More efforts needed[EB/OL]. [2020-06]. https://www.iea.org/reports/hydrogen.
Kirsten Hund, Daniele La Porta, Thao P. Fabregas. 2020. Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition[R]. Washington, DC: The World Bank.
Lindsay Delevingne, Will Glazener, Liesbet Grégoir. 2020. Climate risk and decarbonization: What every mining CEO needs to know[R]. New York City: Mckinsey&Company.
Mao Xiang, Guo Dianbin, Luo Lu, Wang Tinghao. 2019. The global development process of hot dry rock (enhanced geothermal system) and its geological background[J]. Geological Review, 65(6): 1462-1472(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP201906018.htm
Mark P Mills. 2020. Mines, Minerals, And "Green" Energy: A Reality Check[R]. New York: Manhattan Institute.
Michael H. Stephenson, Philip Ringrose, Sebastian Geiger, Michael Bridden, David Schofield. 2019. Geoscience and decarbonization: current status and future directions[J]. Petroleum Geoscience, 25: 501-508. doi: 10.1144/petgeo2019-084
Michel Berthélemy, Sama Bilbao Y Leon. 2020. Nuclear Power[EB/OL]. [2020-06]. https://www.iea.org/reports/nuclear-power.
Mike Stephenson, Florence Bullough. 2020. Geological skills and knowledge crucial in delivering net-zero[J]. Science in Parliament, 75(4): 11-13. http://www.researchgate.net/publication/343683028_Negotiation_Skills_Crucial_in_Resolving_Differences_and_Disagreement_between_Individuals
Mining Online. 2017. Major breakthrough in emerging clean energy exploration may rewrite the traditional energy map[EB/OL]. [2017-09-07]. https://www.sohu.com/a/190453433_740265.
Northern Gas Networks. 2018. H21 North of England-national launch[EB/OL]. [2018-11-26]. https://www.northerngasnetworks.co.uk/event/h21-launches-national/.
Pacala S, Socolow R. 2004. Stabilization wedges: Solving the climate problem for the next 50 years with current technologies[J]. Science, 305: 968-972. doi: 10.1126/science.1100103
Ringrose P S. 2017. Principles of sustainability and physics as a basis for the low-carbon energy transition[J]. Petroleum Geoscience, 23: 287-297. doi: 10.1144/petgeo2016-060
Ryan Morrison. 2021. The earth will reach a critical point in 30 years[N]. Reference News, 1.27(9).
S Julio Friedmann, Alex Zapantis, Brad Pag. 2020. Net-Zero And Geospheric Return: Actions Today For 2030 And Beyond[R]. Amsterdam: Columbia University CGEP.
Stephenson M. 2018. Energy and climate change: Geological controls, interventions, and mitigations[J]. Energy & Climate Change, 2018: 175-178. http://www.sciencedirect.com/science/article/pii/B9780128120217000099
Wang Guiling. 2020. Develop new geothermal energy and build a clean, low-carbon, safe and efficient energy system[J]. Acta Geologica Sinica, 94(7): 1921-1922(in Chinese with English abstract).
www. tanjiaoyi. com. 2020. Which countries and regions in the world have set the goal of carbon neutrality (net zero emission)?[EB/OL]. [2020-09-01]. http://www.tanjiaoyi.com/article-32125-1.html.
Yang Jianfeng, Wang Yao, Ma Teng, Zhang Cuiguang. 2019. Current status and strategies of exploration and development of Hot Dry Rock geothermal energy in the United States and implications for China[J]. Land and Resources Information, (6): 8-14, 56(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GTZQ201906002.htm
北极星储能网. 2016. 世界十大抽水蓄能电站你知道几个?[EB/OL]. [2016-01-22]. http://chuneng.bjx.com.cn/news/20160122/703734.shtml.
瑞安·莫里森. 2021. 地球三十年内将达致命临界点[N]. 参考消息, 1.27(9).
矿业在线. 2017. 新兴清洁能源勘查获重大突破, 或将改写传统能源版图[EB/OL]. [2017-09-07]. https://www.sohu.com/a/190453433_740265.
毛翔, 国殿斌, 罗璐, 王婷灏. 2019. 世界干热岩地热资源开发进展与地质背景分析[J]. 地质论评, 65(6): 1462-1472. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201906018.htm
王贵玲. 2020. 开发地热新能源, 构建清洁低碳、安全高效的能源体系[J]. 地质学报, 94(7): 1921-1922. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202007001.htm
杨建锋, 王尧, 马腾, 张翠光. 2019. 美国干热岩地热资源勘查开发现状、战略与启示[J]. 国土资源情报, (6): 8-14, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-GTZQ201906002.htm
中国碳交易网. 2020. 全球哪些国家和地区设立了碳中和(净零排放)目标?[EB/OL]. [2020-09-01]. http://www.tanjiaoyi.com/article-32125-1.html.
中国石化报. 2019. 干热岩定义与资源量[EB/OL]. [2019-12-23]. http://202.149.227.159/zgshb/html/2019-12/23/content_841175.htm?div=-1.
-