中国地质调查局 中国地质科学院主办
科学出版社出版

胶东西南部三合山岩体岩石成因和构造背景:年代学、地球化学及Sr−Nd−Pb−Hf 同位素约束

邹占春, 刘俊玉, 陈建, 李景波, 丁正江, 孙丽莎, 李双飞, 唐名鹰, 张蕾, 王欣然. 2024. 胶东西南部三合山岩体岩石成因和构造背景:年代学、地球化学及Sr−Nd−Pb−Hf 同位素约束[J]. 中国地质, 51(4): 1387-1410. doi: 10.12029/gc20211227002
引用本文: 邹占春, 刘俊玉, 陈建, 李景波, 丁正江, 孙丽莎, 李双飞, 唐名鹰, 张蕾, 王欣然. 2024. 胶东西南部三合山岩体岩石成因和构造背景:年代学、地球化学及Sr−Nd−Pb−Hf 同位素约束[J]. 中国地质, 51(4): 1387-1410. doi: 10.12029/gc20211227002
ZOU Zhanchun, LIU Junyu, CHEN Jian, LI Jingbo, DING Zhengjiang, SUN Lisha, LI Shuangfei, TANG Mingying, ZHANG Lei, WANG Xinran. 2024. Petrogenesis and tectonic setting of the Sanheshan pluton in southwest of Jiaodong: Evidence from geochronology, geochemistry and Sr−Nd−Pb−Hf isotopes[J]. Geology in China, 51(4): 1387-1410. doi: 10.12029/gc20211227002
Citation: ZOU Zhanchun, LIU Junyu, CHEN Jian, LI Jingbo, DING Zhengjiang, SUN Lisha, LI Shuangfei, TANG Mingying, ZHANG Lei, WANG Xinran. 2024. Petrogenesis and tectonic setting of the Sanheshan pluton in southwest of Jiaodong: Evidence from geochronology, geochemistry and Sr−Nd−Pb−Hf isotopes[J]. Geology in China, 51(4): 1387-1410. doi: 10.12029/gc20211227002

胶东西南部三合山岩体岩石成因和构造背景:年代学、地球化学及Sr−Nd−Pb−Hf 同位素约束

  • 基金项目: 国家自然科学基金项目(41973048)、中国地质调查局项目(DD20190159-11、DD20190159-2020-6)和山东省地质勘查项目(鲁勘字(2020)18号)联合资助。
详细信息
    作者简介: 邹占春,男, 1986年生,高级工程师,从事地质矿产调查及勘查工作;E-mail:36307895@qq.com
    通讯作者: 陈建,男, 1982年生,高级工程师,从事地质矿产调查及勘查工作;E-mail:47259697@qq.com
  • 中图分类号: P587; P597.3

Petrogenesis and tectonic setting of the Sanheshan pluton in southwest of Jiaodong: Evidence from geochronology, geochemistry and Sr−Nd−Pb−Hf isotopes

  • Fund Project: Supported by the National Natural Science Foundation of China (No.41973048), projects of China Geological Survey (No.DD20190159−11, No.DD20190159−2020−6), Shandong Geological Exploration Project (Lu(2018)No.18).
More Information
    Author Bio: ZOU Zhanchun, male, born in 1986, senior engineer, engaged in geological and mineral resources survey and exploration; E-mail: 36307895@qq.com .
    Corresponding author: CHEN Jian, male, born in 1982, senior engineer, engaged in geological and mineral resources survey and exploration; E-mail: 47259697@qq.com.
  • 研究目的

    胶东地区是中国最大的金矿矿集区,也是山东省最为重要的铜钼多金属矿成矿区。加强中生代花岗岩的岩相学、岩石地球化学和年代学等方面的研究,有利于进一步促进该区金及多金属矿的找矿工作。

    研究方法

    本文以胶东半岛西南部三合山岩体中细粒二长花岗岩和花岗斑岩为研究对象,开展系统的岩相学、LA−ICP−MS 锆石U−Pb 年代学、主微量元素地球化学、全岩Sr−Nd−Pb 同位素及锆石Lu−Hf 同位素研究,旨在探讨其岩石成因、岩浆源区性质和构造背景。

    研究结果

    LA−ICP−MS锆石U−Pb定年结果表明,中细粒二长花岗岩的成岩年龄为(115.42±0.27)Ma,花岗斑岩的形成年龄为(115.21±0.25)Ma,形成时代均属中生代早白垩晚期;岩石地球化学特征表明,中细粒二长花岗岩和花岗斑岩均属高钾钙碱性I型花岗质岩石,LREE较HREE分馏明显,具弱Ce负异常和明显Eu中等负异常,富集Rb、K、Zr和Hf,亏损Sr、Ba、Nb、P、Ti;全岩Sr−Nd−Pb及锆石Hf同位素分析结果表明,三合山岩体起源于重熔的下地壳,并受到了幔源物质的混染。

    结论

    三合山岩体形成于早白垩世太平洋板块相对欧亚板块俯冲导致的陆内伸展背景下,为中国东部岩石圈减薄过程中壳幔相互作用的产物。

  • 加载中
  • 图 1  胶东大地构造位置( a) 与金−多金属矿床分布图(b)(据丁正江等,2013杨立强等,2014修改)

    Figure 1. 

    图 2  三合山岩体地质略图及野外露头照片(据山东省地质矿产勘查开发局第四地质大队,1992 1修改)

    Figure 2. 

    图 3  三合山岩体手标本及显微镜照片

    Figure 3. 

    图 4  三合山岩体花岗岩TAS图解(a)(据Wilson,1989)、A/CNK−A/NK图解(b)(据Maniar and Piccoli,1989)、SiO2−K2O图解(c)(据Le Maitre,1989; Rickwood,1989)及AR−SiO2图解(d)(据Wright,1969

    Figure 4. 

    图 5  三合山岩体球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)

    Figure 5. 

    图 6  三合山岩体中细粒二长花岗岩(a、c)和花岗斑岩(b、d)锆石阴极发光图像和锆石U−Pb年龄谐和图

    Figure 6. 

    图 7  三合山岩体Harker图解(空心为实测数据;实心为收集数据,数据来源据山东省地质矿产勘查开发局第四地质大队,1992 1

    Figure 7. 

    图 8  三合山岩体花岗岩成因判别图解(底图据Whalen et al., 1987

    Figure 8. 

    图 9  三合山岩体花岗岩Sr−Nd同位素图解

    Figure 9. 

    图 10  三合山岩体花岗岩Pb同位素207Pb/204Pb–206Pb/204Pb相关曲线(a,据Allègre,1988)、206Pb/204Pb–143Nd/144Pb相关图解(b,据Zindler and Hart,1986

    Figure 10. 

    图 11  三合山岩体花岗岩锆石εHf(t)−t图解(据李秀章等, 2022

    Figure 11. 

    图 12  三合山岩体构造环境判别图解(底图据Pearce et al.,1984

    Figure 12. 

    表 1  三合山岩体主量元素(%)和微量元素(10−6)测试结果

    Table 1.  Major (%) and trace elements (10−6) data of Sanheshan pluton

    样号SHS-H1SHS-H2SHS-H3SHS-H4SHS-H5SHS-H6样号SHS-H1SHS-H2SHS-H3SHS-H4SHS-H5SHS-H6
    岩性中细粒二长花岗岩花岗斑岩岩性中细粒二长花岗岩花岗斑岩
    Al2O313.6113.9014.0113.9114.4014.50Cd0.151.500.220.110.130.11
    SiO272.5072.1371.3971.3469.9570.94In0.010.020.020.010.010.01
    CaO1.171.051.301.401.461.45Sb0.160.860.440.220.230.18
    K2O4.805.125.094.725.155.09Cs0.960.881.271.271.211.41
    Fe2O3T2.152.302.462.572.502.50Ba479.20635.43711.47652.29960.24853.53
    FeO*1.131.171.261.361.281.30Ta3.352.472.852.072.152.24
    MgO0.430.460.490.600.640.58W3.893.412.920.761.740.72
    MnO0.050.060.060.060.050.06Re0.020.020.020.020.020.01
    Na2O4.014.094.124.074.124.17Tl0.590.630.720.600.630.64
    P2O50.080.090.100.120.120.12Pb17.1918.2320.0217.6718.5419.80
    TiO20.310.360.390.420.400.41Bi0.170.132.690.050.020.02
    LOI0.990.710.720.690.790.61Th18.1015.3415.7717.1514.7416.45
    Total100.10100.27100.1399.9199.58100.41U3.903.033.437.033.884.59
    DI89.8590.5889.488887.5688.6Hf4.835.026.145.204.854.62
    SI3.833.894.095.105.244.77La41.7642.7354.5351.6050.0346.71
    A/NK1.151.131.141.181.171.17Ce80.8681.0999.0489.6986.7283.07
    A/CNK0.980.980.960.970.960.97Pr7.897.839.648.178.327.67
    AR3.373.423.333.273.163.19Nd30.0429.3736.6030.2830.1828.76
    σ2.632.912.992.733.193.07Sm5.284.685.964.644.684.52
    Mg#28.4128.4528.3131.6333.6231.46Eu0.690.750.830.790.880.81
    Li10.917.9010.8715.8916.5315.96Gd4.634.415.294.354.214.07
    Be5.984.865.854.624.504.63Tb0.720.590.800.570.570.58
    Sc2.292.393.422.682.882.59Dy3.963.094.062.873.022.96
    Ti2223.662637.783036.493174.673064.323122.98Ho0.670.520.730.480.500.49
    V12.3412.2714.8719.5119.2219.42Er2.231.672.391.601.641.63
    Cr9.4410.693.1514.887.5614.15Tm0.410.300.410.280.290.29
    Mn349.94409.02461.86425.79469.52419.42Yb2.632.102.641.972.062.02
    Co2.043.204.815.304.474.34Lu0.390.310.400.290.290.29
    Ni1.3727.6480.7939.7421.8522.43∑REE182.16179.44223.32197.58193.39183.87
    Cu8.8631.8115.3310.5210.6516.48LREE166.52166.45206.60185.17180.81171.54
    Zn36.18286.8337.0042.6236.4038.14HREE15.6412.9916.7212.4112.5812.33
    Ga18.5017.7419.9218.6418.5719.46L/H10.6512.8112.3614.9214.3713.91
    As1.362.682.031.771.651.60δEu0.420.500.440.530.590.57
    Rb184.80173.34193.80180.07187.87194.07δCe1.000.990.960.950.930.96
    Sr152.11149.54176.50243.13276.10275.48(La/Sm)N4.985.745.767.006.726.50
    Y21.8516.4223.7515.4915.8616.05(La/Yb)N10.7113.7213.9317.6616.3715.59
    Zr195.03225.33276.03210.21194.88187.26(Sm/Nd)N0.540.490.500.470.480.48
    Nb27.9127.2332.7524.7324.6225.10(Gd/Yb)N1.421.691.621.781.651.63
    Mo1.8713.5714.469.008.675.96T/℃796808823799790787
    下载: 导出CSV

    表 2  三合山岩体中细粒二长花岗岩和花岗斑岩全岩Sr−Nd同位素分析结果

    Table 2.  Sr−Nd isotope date of whole rock of medium-fine grained monzogranite and granite porphyry in Sanheshan pluton

    样品
    编号
    岩性 t/Ma Rb Sr 87Rb/86Sr 87Sr/86Sr 2σ Sm Nd 147Sm/144Nd 143Nd/144Nd 2σ ISr(t) INd(t) εNd(t) TDM2/Ma
    /10−6 /10−6
    SHS-H1 中细
    粒二
    长花
    岗岩
    115.42 167.0 156.4 3.09 0.714895 0.000004 5.21 27.47 0.114550 0.511863 0.000009 0.70984 0.511777 −13.91 2041
    SHS-H2 115.42 168.8 170.9 2.86 0.714753 0.000004 5.04 29.86 0.102043 0.511877 0.000009 0.71008 0.511800 −13.46 2005
    SHS-H4 花岗
    斑岩
    115.21 152.2 295.4 1.49 0.713277 0.000004 4.94 31.15 0.095839 0.511770 0.000009 0.71084 0.511698 −15.45 2167
    SHS-H5 115.21 156.2 338.2 1.34 0.712558 0.000005 4.90 30.49 0.097061 0.511793 0.000009 0.71037 0.511720 −15.02 2132
    下载: 导出CSV

    表 3  三合山岩体中细粒二长花岗岩和花岗斑岩全岩Pb同位素分析结果

    Table 3.  Pbisotope date of whole rock of medium-fine grained monzogranite and granite porphyry in Sanheshan pluton

    样品
    编号
    岩性 t/Ma Th U Pb 206Pb/204Pb 2σ 207Pb/204Pb 2σ 208Pb/204Pb 2σ (206Pb/204Pb)i (207Pb/204Pb)i (208Pb/204Pb)i
    /10−6
    SHS-H1 中细粒二长
    花岗岩
    115.42 16.9 5.16 21.4 17.4478 0.0003 15.4702 0.0003 37.9679 0.0007 17.1799 15.4572 37.6805
    SHS-H2 115.42 35.4 14.1 45.9 17.3563 0.0003 15.4656 0.0003 37.8582 0.0008 17.0150 15.4491 37.5775
    SHS-H4 花岗斑岩 115.21 31.9 7.27 26.4 17.4101 0.0003 15.4709 0.0003 37.9594 0.0007 17.1041 15.4561 37.5196
    SHS-H5 115.21 28.7 8.71 40.8 17.3811 0.0003 15.4656 0.0002 37.9395 0.0006 17.1440 15.4541 37.6835
    下载: 导出CSV

    表 4  三合山岩体中细粒二长花岗岩和花岗斑岩LA−ICP−MS U−Pb 分析结果

    Table 4.  LA−ICP−MS zircons U−Pb isotope date of medium−fine grained monzogranite and granite porphyry in Sanheshan pluton

    样品编号 含量/10−6 Th/U 同位素比值 年龄/Ma 谐和度
    /%
    Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
    SHS-H1-01 298.08 550.69 0.54 0.04884 0.00099 0.12673 0.00256 0.01884 0.00015 140.4 47.6 121.2 2.3 120.3 1 99.29
    SHS-H1-02 436.92 495.22 0.88 0.04773 0.00105 0.11878 0.00265 0.01808 0.00023 86.1 52.4 114 2.4 115.5 1.4 98.65
    SHS-H1-03 274.80 525.30 0.52 0.04893 0.00112 0.12683 0.00313 0.01879 0.0002 144.3 53.8 121.2 2.8 120 1.2 98.97
    SHS-H1-04 543.04 771.30 0.70 0.04848 0.00066 0.12216 0.00224 0.01822 0.00024 122.9 32.1 117 2 116.4 1.5 99.46
    SHS-H1-05 461.77 704.41 0.66 0.0486 0.00081 0.12099 0.00214 0.01805 0.0002 128.8 39.5 116 1.9 115.3 1.2 99.45
    SHS-H1-06 778.55 897.44 0.87 0.04864 0.00075 0.12036 0.00206 0.01795 0.00025 130.3 36.2 115.4 1.9 114.7 1.6 99.38
    SHS-H1-07 388.93 602.59 0.65 0.04892 0.00078 0.12619 0.00211 0.01869 0.00013 144 37.2 120.7 1.9 119.4 0.8 98.94
    SHS-H1-08 584.03 909.03 0.64 0.05177 0.00061 0.13748 0.00214 0.01925 0.00023 275.4 26.8 130.8 1.9 122.9 1.5 93.95
    SHS-H1-09 299.49 584.38 0.51 0.0486 0.00081 0.1217 0.00209 0.0182 0.00025 128.6 39.1 116.6 1.9 116.3 1.6 99.71
    SHS-H1-10 721.04 1079.50 0.67 0.05068 0.00071 0.12576 0.00235 0.01796 0.00023 226.5 32.2 120.3 2.1 114.7 1.5 95.38
    SHS-H1-11 342.01 560.97 0.61 0.04823 0.00084 0.12004 0.00168 0.01811 0.00021 110.4 41.1 115.1 1.5 115.7 1.3 99.51
    SHS-H1-12 382.91 496.64 0.77 0.0492 0.00086 0.13447 0.00259 0.01982 0.00024 157.1 41.1 128.1 2.3 126.5 1.5 98.74
    SHS-H1-13 646.64 817.67 0.79 0.04843 0.00099 0.12063 0.00267 0.01807 0.00022 120.2 48.2 115.6 2.4 115.4 1.4 99.81
    SHS-H1-14 672.97 809.51 0.83 0.04835 0.00071 0.1196 0.00177 0.01797 0.00018 116.4 34.9 114.7 1.6 114.8 1.1 99.89
    SHS-H1-15 503.59 775.33 0.65 0.04885 0.00085 0.12743 0.00213 0.01891 0.00021 140.5 40.8 121.8 1.9 120.7 1.3 99.14
    SHS-H1-16 799.18 1008.37 0.79 0.05048 0.00085 0.12453 0.00225 0.01791 0.00022 217.2 38.8 119.2 2 114.4 1.4 96.01
    SHS-H1-17 291.41 530.44 0.55 0.04783 0.00073 0.11906 0.00203 0.01804 0.00015 91 36.3 114.2 1.8 115.3 1 99.07
    SHS-H1-18 369.34 460.87 0.80 0.04843 0.00085 0.11945 0.00219 0.01791 0.00022 120.5 41.6 114.6 2 114.4 1.4 99.86
    SHS-H1-19 506.22 705.33 0.72 0.04825 0.00096 0.11987 0.00208 0.01805 0.00016 111.6 47 115 1.9 115.3 1 99.66
    SHS-H1-20 580.28 802.42 0.72 0.04836 0.00063 0.12 0.00207 0.01805 0.00024 116.8 30.7 115.1 1.9 115.3 1.5 99.77
    SHS-H1-21 520.20 690.67 0.75 0.05056 0.00088 0.13097 0.00247 0.01884 0.0003 220.7 40.1 125 2.2 120.3 1.9 96.27
    SHS-H1-22 312.05 466.17 0.67 0.04793 0.00078 0.12474 0.00197 0.0189 0.00022 96 38.5 119.4 1.8 120.7 1.4 98.87
    SHS-H1-23 331.44 525.58 0.63 0.0519 0.00082 0.13187 0.00202 0.01846 0.00017 281.1 36.2 125.8 1.8 117.9 1.1 93.73
    SHS-H1-24 138.16 174.13 0.79 0.0488 0.00137 0.1208 0.00328 0.01806 0.00023 138.4 65.9 115.8 3 115.4 1.4 99.62
    SHS-H1-25 358.83 432.95 0.83 0.0487 0.00098 0.12014 0.00209 0.01796 0.00017 133.4 47.2 115.2 1.9 114.8 1.1 99.63
    SHS-H1-26 299.95 400.79 0.75 0.0487 0.00068 0.12119 0.00202 0.01807 0.00019 133.2 32.9 116.2 1.8 115.4 1.2 99.39
    SHS-H1-27 404.64 640.94 0.63 0.04823 0.00086 0.11961 0.00222 0.01803 0.00022 110.4 42.3 114.7 2 115.2 1.4 99.58
    SHS-H1-28 464.66 704.26 0.66 0.04856 0.00092 0.1224 0.0024 0.0183 0.00023 126.4 44.6 117.2 2.2 116.9 1.4 99.72
    SHS-H1-29 664.74 757.28 0.88 0.04838 0.00065 0.12128 0.00194 0.0182 0.00019 118 31.8 116.2 1.8 116.2 1.2 99.99
    SHS-H1-30 417.79 644.51 0.65 0.04805 0.00067 0.12017 0.00187 0.01815 0.00017 101.9 33 115.2 1.7 115.9 1.1 99.38
    SHS-H4-01 404.97 634.56 0.61 0.04823 0.00107 0.12184 0.00229 0.01836 0.00027 110.8 52.2 116.7 2.1 117.3 1.7 99.51
    SHS-H4-02 221.91 363.68 0.59 0.04769 0.00095 0.11753 0.00238 0.01789 0.00017 83.9 47.5 112.8 2.2 114.3 1.1 98.71
    SHS-H4-03 662.61 785.21 0.81 0.0484 0.00069 0.11611 0.00148 0.01741 0.00014 119.1 33.8 111.5 1.3 111.3 0.9 99.76
    SHS-H4-04 359.95 606.30 0.57 0.04815 0.00082 0.12113 0.00182 0.01829 0.00019 106.4 40.1 116.1 1.6 116.9 1.2 99.34
    SHS-H4-05 499.70 1199.82 0.42 0.0496 0.00097 0.12807 0.00239 0.01881 0.00028 176.1 45.4 122.4 2.2 120.1 1.8 98.18
    SHS-H4-06 353.63 584.96 0.6 0.0516 0.00108 0.12611 0.00271 0.01773 0.0002 267.5 48.2 120.6 2.4 113.3 1.3 93.94
    SHS-H4-07 606.58 728.31 0.82 0.04841 0.00067 0.12016 0.00176 0.01803 0.00018 119.5 32.7 115.2 1.6 115.2 1.1 99.98
    SHS-H4-08 547.19 940.08 0.57 0.04884 0.0009 0.1219 0.00252 0.0181 0.00022 140 43.2 116.8 2.3 115.6 1.4 99
    SHS-H4-09 162.49 218.28 0.72 0.0976 0.00581 0.26322 0.01747 0.0189 0.00028 1578.7 111.5 237.3 14 120.7 1.8 50.88
    SHS-H4-10 219.02 316.83 0.67 0.0481 0.00087 0.11923 0.00235 0.01795 0.00017 104.3 42.7 114.4 2.1 114.7 1.1 99.7
    SHS-H4-11 492.39 669.39 0.73 0.04854 0.00088 0.12031 0.0021 0.01801 0.00018 125.7 42.4 115.4 1.9 115.1 1.1 99.74
    SHS-H4-12 485.68 769.69 0.62 0.0482 0.00075 0.1189 0.00195 0.01789 0.00017 108.9 36.6 114.1 1.8 114.3 1.1 99.78
    SHS-H4-13 332.11 449.72 0.73 0.04777 0.00067 0.11921 0.00184 0.0181 0.00016 87.7 33.4 114.4 1.7 115.6 1 98.91
    SHS-H4-14 373.12 576.05 0.63 0.12877 0.00986 0.38418 0.03117 0.02106 0.00033 2081.3 134.7 330.1 22.9 134.4 2.1 40.7
    SHS-H4-15 384.84 655.90 0.57 0.04871 0.00113 0.12081 0.00281 0.01802 0.00026 133.9 54.7 115.8 2.5 115.1 1.6 99.42
    SHS-H4-16 652.15 675.30 0.94 0.04863 0.00089 0.12097 0.00278 0.018 0.00022 130.1 42.8 116 2.5 115 1.4 99.17
    SHS-H4-17 403.25 600.87 0.65 0.04963 0.00128 0.12442 0.00344 0.0182 0.00029 177.8 60 119.1 3.1 116.2 1.9 97.63
    SHS-H4-18 336.63 669.29 0.49 0.04799 0.00064 0.11944 0.00155 0.01807 0.00014 98.6 31.6 114.6 1.4 115.4 0.9 99.25
    SHS-H4-19 313.74 524.55 0.59 0.06444 0.00112 0.15985 0.00253 0.01804 0.00016 756.2 36.5 150.6 2.2 115.2 1 76.53
    SHS-H4-20 352.20 569.94 0.6 0.04851 0.00123 0.11984 0.00301 0.01792 0.00027 124 59.5 114.9 2.7 114.5 1.7 99.62
    SHS-H4-21 159.20 238.15 0.67 0.04871 0.00126 0.12083 0.003 0.01808 0.00019 133.7 60.6 115.8 2.7 115.5 1.2 99.7
    SHS-H4-22 381.55 517.41 0.72 0.04875 0.00097 0.12092 0.00227 0.01803 0.00018 136 46.5 115.9 2.1 115.2 1.2 99.38
    SHS-H4-23 388.39 602.39 0.62 0.04775 0.0009 0.1187 0.00221 0.01805 0.00016 87 44.6 113.9 2 115.3 1 98.76
    SHS-H4-24 266.55 379.52 0.69 0.04811 0.00088 0.11798 0.00197 0.01785 0.00018 104.8 43.1 113.2 1.8 114 1.1 99.31
    SHS-H4-25 368.31 609.97 0.58 0.04864 0.00125 0.1211 0.00263 0.01811 0.00024 130.6 60.3 116.1 2.4 115.7 1.5 99.68
    SHS-H4-26 223.64 335.62 0.66 0.0525 0.00113 0.13084 0.0029 0.01812 0.00023 307.3 49.1 124.8 2.6 115.8 1.4 92.73
    SHS-H4-27 226.31 323.53 0.68 0.04887 0.00141 0.12122 0.00236 0.01817 0.00033 141.7 67.9 116.2 2.1 116.1 2.1 99.89
    SHS-H4-28 847.75 1294.89 0.63 0.04854 0.00056 0.11494 0.00138 0.01718 0.00017 125.7 27.3 110.5 1.3 109.8 1.1 99.41
    SHS-H4-29 520.32 623.94 0.81 0.04883 0.00099 0.12087 0.00217 0.01798 0.00022 139.7 47.6 115.9 2 114.9 1.4 99.15
    SHS-H4-30 307.92 557.81 0.53 0.04868 0.00094 0.1212 0.00221 0.0181 0.00018 132.6 45.4 116.2 2 115.6 1.1 99.54
    下载: 导出CSV

    表 5  三合山岩体中细粒二长花岗岩和花岗斑岩锆石Lu−Hf分析结果

    Table 5.  Zircon Lu−Hf isotope date of medium−fine grained monzogranite and granite porphyry in Sanheshan pluton

    样品编号 T/Ma 176Yb/178Hf 2σ 176Lu/178Hf 2σ 176Hf/178Hf 2σ εHf(0) εHf(t) TDM/Ma TDM2/Ma fLu/Hf
    SHS-H1-002 115.5 0.034365 0.000136 0.001259 0.000005 0.282244 0.000016 −18.67 −16.25 1431 2204 −0.96
    SHS-H1-004 116.4 0.040687 0.000423 0.001395 0.000013 0.282230 0.000014 −19.17 −16.72 1456 2235 −0.96
    SHS-H1-005 115.3 0.035505 0.000181 0.001268 0.000007 0.282195 0.000015 −20.40 −17.95 1500 2313 −0.96
    SHS-H1-006 114.7 0.055793 0.000178 0.001942 0.000014 0.282288 0.000017 −17.12 −14.74 1395 2109 −0.94
    SHS-H1-009 116.3 0.034779 0.000340 0.001231 0.000007 0.282220 0.000014 −19.53 −17.08 1464 2257 −0.96
    SHS-H1-011 115.7 0.041548 0.001231 0.001526 0.000035 0.282209 0.000014 −19.93 −17.52 1492 2284 −0.95
    SHS-H1-013 115.4 0.043584 0.000611 0.001507 0.000017 0.282239 0.000016 −18.84 −16.43 1448 2216 −0.95
    SHS-H1-014 114.8 0.042933 0.000181 0.001555 0.000004 0.282223 0.000018 −19.42 −17.01 1473 2253 −0.95
    SHS-H1-016 114.4 0.048977 0.001296 0.001710 0.000035 0.282156 0.000021 −21.78 −19.42 1574 2403 −0.95
    SHS-H1-017 115.3 0.035244 0.000354 0.001233 0.000017 0.282241 0.000016 −18.77 −16.32 1434 2210 −0.96
    SHS-H1-018 114.4 0.053518 0.001327 0.001771 0.000035 0.282183 0.000019 −20.81 −18.43 1537 2341 −0.95
    SHS-H1-019 115.3 0.035349 0.000213 0.001262 0.000008 0.282268 0.000015 −17.82 −15.40 1398 2151 −0.96
    SHS-H1-020 115.3 0.051387 0.000848 0.001737 0.000025 0.282208 0.000014 −19.94 −17.56 1501 2286 −0.95
    SHS-H1-024 115.4 0.023987 0.000194 0.000814 0.000007 0.282252 0.000016 −18.41 −15.93 1404 2185 −0.98
    SHS-H1-025 114.8 0.032159 0.000260 0.001121 0.000016 0.282159 0.000018 −21.66 −19.23 1544 2392 −0.97
    SHS-H1-026 115.4 0.048079 0.000216 0.001565 0.000011 0.282422 0.000019 −12.36 −9.95 1190 1807 −0.95
    SHS-H1-027 115.2 0.048379 0.000880 0.001646 0.000028 0.282127 0.000018 −22.80 −20.39 1612 2466 −0.95
    SHS-H1-028 116.9 0.038652 0.000438 0.001333 0.000015 0.282171 0.000016 −21.25 −18.80 1537 2366 −0.96
    SHS-H1-029 116.2 0.048147 0.001031 0.001636 0.000036 0.282198 0.000016 −20.31 −17.90 1512 2309 −0.95
    SHS-H1-030 115.9 0.036768 0.000498 0.001304 0.000015 0.282243 0.000014 −18.72 −16.27 1435 2207 −0.96
    SHS-H4-001 117.3 0.056976 0.001736 0.001836 0.000057 0.282135 0.000018 −22.51 −20.10 1608 2447 −0.94
    SHS-H4-002 114.3 0.034185 0.000795 0.001206 0.000020 0.282180 0.000013 −20.94 −18.54 1519 2347 −0.96
    SHS-H4-004 116.9 0.036438 0.000215 0.001309 0.000007 0.282242 0.000023 −18.75 −16.29 1437 2209 −0.96
    SHS-H4-006 113.3 0.035037 0.000510 0.001240 0.000021 0.282261 0.000015 −18.07 −15.69 1407 2168 −0.96
    SHS-H4-007 115.2 0.057145 0.001128 0.001917 0.000035 0.282225 0.000015 −19.35 −16.96 1484 2249 −0.94
    SHS-H4-008 115.6 0.036822 0.000405 0.001276 0.000013 0.282240 0.000014 −18.82 −16.39 1438 2214 −0.96
    SHS-H4-010 114.7 0.029173 0.000118 0.001025 0.000005 0.282227 0.000016 −19.28 −16.83 1447 2243 −0.97
    SHS-H4-011 115.1 0.039391 0.000574 0.001368 0.000010 0.282199 0.000017 −20.26 −17.85 1499 2305 −0.96
    SHS-H4-012 114.3 0.038626 0.000294 0.001350 0.000015 0.282247 0.000015 −18.57 −16.17 1431 2199 −0.96
    SHS-H4-013 115.6 0.037094 0.000262 0.001278 0.000007 0.282163 0.000015 −21.55 −19.11 1546 2385 −0.96
    SHS-H4-015 115.1 0.040294 0.000423 0.001421 0.000020 0.282200 0.000015 −20.24 −17.81 1500 2304 −0.96
    SHS-H4-016 115 0.046511 0.000306 0.001610 0.000006 0.282194 0.000017 −20.45 −18.06 1516 2318 −0.95
    SHS-H4-017 116.2 0.040350 0.000583 0.001369 0.000014 0.282184 0.000018 −20.79 −18.36 1520 2338 −0.96
    SHS-H4-018 115.4 0.037646 0.000760 0.001252 0.000021 0.282323 0.000014 −15.87 −13.42 1320 2028 −0.96
    SHS-H4-020 114.5 0.030983 0.000654 0.001083 0.000025 0.282260 0.000015 −18.11 −15.67 1402 2168 −0.97
    SHS-H4-021 115.5 0.028978 0.000462 0.000996 0.000014 0.282208 0.000016 −19.95 −17.49 1472 2284 −0.97
    SHS-H4-022 115.2 0.042578 0.000377 0.001447 0.000013 0.282173 0.000015 −21.17 −18.77 1538 2362 −0.96
    SHS-H4-023 115.3 0.022154 0.000350 0.000765 0.000013 0.282259 0.000014 −18.14 −15.69 1392 2169 −0.98
    SHS-H4-024 114 0.035765 0.000751 0.001215 0.000020 0.282183 0.000016 −20.85 −18.44 1516 2342 −0.96
    SHS-H4-025 115.7 0.035741 0.000105 0.001236 0.000004 0.282283 0.000015 −17.29 −14.83 1376 2117 −0.96
    下载: 导出CSV

    表 6  胶东伟德山期花岗岩同位素年龄表(LA−ICP−MS锆石U−Pb)

    Table 6.  Isotope chronology of the Weideshan granite in Jiaodong( LA−ICP−MS zircon U−Pb )

    岩体名称 样品编号 地理位置 岩性 年龄/Ma 资料来源
    伟德山GZ威海市崮庄村细粒石英闪长岩112±1李杰等,2013
    SSD-1/1B荣成冷家中细粒钾长花岗岩113. 4±1.8丁正江等,2013
    GZ荣成南台中细粒碎裂花岗岩114. 2±2.1
    三佛山D04-1乳山市三佛山细粒正长花岗岩119.6± 1.0李增达等,2018
    D09-1中细粒二长花岗岩111.4± 2.2
    D11-2中粗粒二长花岗岩115.7± 1.7
    泽头06SD01海阳辛安中粒二长花岗岩114±3郭敬辉等,2005
    06SD17乳山市高家台村中粗粒二长花岗岩116±3
    ZT-1-01文登泽头中粒黑云角闪石英二长岩115.6±1.1董学等,2020
    牙山—
    院格庄
    2017N1院格庄中粒含角闪二长花岗岩118.10±0.66邹键等,2021
    2017N2含巨斑状细中粒二长花岗岩118.52±0.78
    2017N3巨斑状中粒含角闪二长花岗岩118.80±0.67
    艾山16SD-33蓬莱艾山斑状角闪花岗闪长岩116.7±1.7胡波,2019
    WDS07/1B蓬莱张家沟村含斑中粗粒二长花岗岩122±1任天龙等,2021
    JD48栖霞市前寨村斑状中粗粒二长花岗岩119±1
    JD87蓬莱市邓格庄村含斑中粗粒二长花岗岩113±1
    南宿LM06/1b莱州市西姜家村中粒二长花岗岩121.3±2.1胡波,2019
    秦姑庵JD151莱州市秦姑庵斑状中粒二长花岗岩119.9±1.3李秀章等,2021
    三合山SHS-H1平度市三合山中细粒二长花岗岩115.42±0.27本文
    SHS-H4平度市三合山花岗斑岩115.21±0.25
    下载: 导出CSV
  • [1]

    Allègre C J, Lewin E, Dupré B. 1988. A coherent crust−mantle model for the uranium−thorium–lead isotopic system[J]. Chemical Geology, 70(3): 211−234. doi: 10.1016/0009-2541(88)90094-0

    [2]

    Amelin Y, Lee D C, Halliday A N. 2000. Early−middle archaean crustal evolution deduced from Lu−Hf and U−Pb isotopic studies of single zircon grains[J]. Geochimica et Cosmochimica Acta, 64(24): 4205−4225. doi: 10.1016/S0016-7037(00)00493-2

    [3]

    Black L P, Kamo S L, Allen C M, Aleinikoff J N, Davis D W, Korsch R J, Foudoulis C. 2003. TEMORA 1: A new zircon standard for Phanerozoic U−Pb geochronology[J]. Chemical Geology, 200(1/2): 155–170.

    [4]

    Boynton W V. 1984. Cosmochemistry of the rare earth elements: Meteorite studies[J]. Developments in Geochemistry, 63–114.

    [5]

    Chu N C, Taylor R N, Valérie Chavagnac, Nesbitt R W, Boella R M, Milton J A, German C R, Bayon G, Burton K. 2002. Hf isotope ratio analysis using multi−collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections[J]. Journal of Analytical Atomic Spectrometry, 17: 1567−1574. doi: 10.1039/b206707b

    [6]

    Ding Zhengjiang, Sun Fengyue, Liu Fulai, Liu Jianhui, Liu Dianhaop, Zhang Peijian, Du Shengxian, Li Bing. 2013. U–Pb dating of zircons from the Weideshan molybdenum copper polymetallic deposits in Jiaodong Peninsula, China, and its geological significance[J]. Acta Petrologica Sinica, 29(2): 607−618

    [7]

    Ding Zhengjiang, Sun Fengyue, Liu Jianhui, Liu Dianhao, Li Bile, Zhang Peijian, Qian Ye, Li Jie. 2012. Re–Os dating of molybdenites from the Xingjiashan molybdenum–tungsten deposit in Jiaodong Peninsula, China and its geological significance[J]. Acta Petrologica Sinica, 28(9): 2721−2732 (in Chinese with English abstract).

    [8]

    Ding Zhengjiang, Sun Fengyue, Li Guohua, Ji Pan, Kong Yan. 2015. Accurate zircon U–Pb dating of Early Yanshanian molybdenum–tungsten mother rocks in Xingjiashan area of Jiaodong Peninsula and its significance[J]. Geology in China, 42(2): 556−569 (in Chinese with English abstract).

    [9]

    Dong Xue, Li Dapeng, Zhao Rui, Wang Xinran, Wang Qingfei. 2020. Zircon U–Pb chronology and petrogenesis of Zetou pluton in the Jiaodong Peninsula: Implications for regional petrogenesis and mineralization in the Aptian to Albian[J]. Acta Petrologica Sinica, 36(5): 1501−1514 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.05.11

    [10]

    Dong Yinfeng, Xu Jinxin, Zhao Jin, Li Mingbo, Du Zhenming. 2015. Metallogenic regularity of laizhou–Anqiu iron ore–forming belt in Shandong Province[J]. Shandong Land and Resources, 31(5): 7−12 (in Chinese with English abstract).

    [11]

    Gai Yongsheng, Liu Liang, Kang Lei, Yang Wenqiang, Liao Xiaoying, Wang Yawei. 2015. The origin and geologic significance of plagiogranite inophiolite belt at North Altyn Tagh[J]. Acta Petrologica Sinica, 31(9): 2549−2565 (in Chinese with English abstract).

    [12]

    Gao S, Luo T C, Zhang B R, Zhang H F, Han Y W, Zhao Z D, Hu Y K. 1998. Chemical composition of the continental crust as revealed by studies in East China[J]. Geochimica et Cosmochimica Acta, 62(11): 1959−1975. doi: 10.1016/S0016-7037(98)00121-5

    [13]

    Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust–mantle system[J]. Chemical Geology, 120(3/4): 347−359.

    [14]

    Guo Jing, Zhu Xueqiang, Ren Tianlong, Dai Guangkai. 2019. Discovery and significance of cryptoexplosive intrusive breccia in Xiangkuang polymetallic sulfide deposit in Qixia Area of Shandong Province[J]. Shandong Land and Resources, 35(1): 19−24 (in Chinese with English abstract).

    [15]

    Guo Jinghui, Chen Fukun, Siebel W, Zhai Mingguo. 2005. Evolution of syn− to post−collisional magmatism from north Sulu UHP belt, eastern China: Zircon U−Pb geochronology[J]. Acta Petrologica Sinica, 21(4): 1281–1301 (in Chinese with English abstract).

    [16]

    Han Xiaomeng, Duan Liu'an, Zhao Pengfei, Wang Jiantian, Guo Yuncheng. 2024. Pyrite Rb−Sr isochron age of the Qianchuiliu gold deposit on northeastern margin of Jiaolai Basin, Shandong Province[J]. Geology in China, 51(1): 366−367 (in Chinese with English abstract).

    [17]

    Hart S R. 1984. A large–scale isotope anomaly in the southern hemisphere mantle[J]. Nature, 309(5971): 753−757. doi: 10.1038/309753a0

    [18]

    Hua Bei, Gao Xue, Hu Zhaoguo, Mei Zhenhua, Zhang Zhiwu, Meng Yinsheng, Zhang Baotao, Zhao Lei. 2020. Petrogenesis and tectonic setting of the Wuzhuxinwusu granite, western Xing–Meng Orogenic Belt: Evidences from geochemistry, zircon U–Pb geochronology and Sr–Nd–Hf isotopes[J]. Acta Petrologica Sinica, 36(5): 1426−1444 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.05.07

    [19]

    Hu Bo. 2019. Chronology, Geochemical Characteristics and Tectonic Significance of the Aishan–Nansu Pluton in Jiaodong[D]. Shijiazhuang: Hebei GEO University, 1–63(in Chinese with English abstract).

    [20]

    Jahn B M ,Wu F Y, Lo C H, Tsai C H. 1999. Crust−mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr–Nd isotopic evidence from post−collisional mafic–ultramafic intrusions of the northern Dabie complex, central China[J]. Chemical Geology, 157(1/2): 119–146.

    [21]

    Jochum K P, Mcdonough W F, Palme H, Spettel B. 1989. Compositional constraints on the continental lithospheric mantle from trace elements in spinel peridotite xenoliths[J]. Nature, 340(6234): 548−550. doi: 10.1038/340548a0

    [22]

    Kelemen P B, Hanghj K, Greene A R. 2007. One view of the geochemistry of subduction–related magmatic arcs, with an emphasis on primitive andesite and lower crust[J]. Treatise on Geochemistry, 3: 1−70.

    [23]

    Le Maitre R W. 1989. A Classification of Igneous Rocks and a Glossary of Terms: Recommendations of the International Union of Geological Sciences Sub–Commision on the Systematics of Igneous Rocks[M]. Blackwell, Oxford.

    [24]

    Li Hongkui, Zhuo Chuanyuan, Geng Ke, Liang Taitao. 2017. Intra–continental extensional tectonics of the Tan–Lu fault zone: An example from the appearance characteristics of the Yishu fault zone[J]. Earth Science Frontiers, 24(2): 73−84 (in Chinese with English abstract).

    [25]

    Li Jie. 2012. The Study on Metallization and Metallogenetic Model of Mo–Cu–Pb–Zn Complex Deposits and Comparison with Gold Metallization in Jiaodong Area[D]. Chengdu: Chengdu University of Technology, 1–127(in Chinese with English abstract).

    [26]

    Li Jie, Song Mingchun, Li Shiyong, Zhou Mingling, Ni Shijun, Zhang Chengjiang, Ding Zhengjiang, Yue Yuepo. 2013. Geological and geochemical features of the Dadengge gold polymetallic deposit in Jiaodong Peninsula[J]. Geology in China, 43(1): 221−237 (in Chinese with English abstract).

    [27]

    Li Jie, Song Mingchun, Li Shiyong, Zhou Xiaojian, Song Yingxin, Ding Zhengjiang, Yang Lixin, Wang Shanshan, Jiang Fan, Li Qian. 2016. Geological and geochemical features of the Dadengge gold polymetallic deposit in Jiaodong Peninsula[J]. Geology in China, 43(1): 221−237 (in Chinese with English abstract).

    [28]

    Li Xiuzhang, Liu Handong, Yu Xiaowei, Wang Ligong, Zhu Peigang, Guo Ruipeng. 2021. Petrogenesis element geochenistry Zircon U–Pb Chronology and Lu–Hf isotopic constraints of Qinguan granite body in northwestern Jiaozhou area[J]. Shandong Land and Resources, 37(12): 1−16 (in Chinese with English abstract).

    [29]

    Li Xiuzhang, Wang Ligong, Li Yixin, Wang Yingpeng, Yu Xiaowei, Zhang Wen, Guo Ruipeng, Liu Handong. 2022. Geochemistry, Zircon U–Pb chronology and Lu–Hf isotope characteristics of monzogranites from Aishan Pluton in Jiaodong Peninsula[J]. Geoscience, 36(1): 333−346. (in Chinese with English abstract).

    [30]

    Li Zengda, Yu Xiaofei, Wang Qunming, Du Zezhong, Cao Qiang, Shi Yuanming, Wang Ran. 2018. Petrogenesis of Sanfoshan granite, Jiaodong: Diagenetic physical and chemical conditions, zircon U–Pb geochronology and Sr–Nd isotope constraints[J]. Acta Petrologica Sinica, 34(2): 447−468 (in Chinese with English abstract).

    [31]

    Liu A D, Yun C G, Xiao M H, Jian T W, Peng F Z, Li P W, You F W. 2022. Discovery of a medium–scale tectonic altered rock type gold deposit (13.5 t) on the northeastern margin of Jiaolai Basin, Shandong Province, China and its new application of exploration direction[J]. China Geology, 5: 543−545.

    [32]

    Ludwig K R. 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication.

    [33]

    Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101: 635−643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    [34]

    Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25: 956–983.

    [35]

    Qian Qing, Zhong Sunlin, Li Tongyi, Wen Daren. 2002. Geochemical characteristics and petrogenesis of the Badaling high Ba–Sr granitoids: A comparison of igneous rocks from North China and the Dabie–Sulu Orogen[J]. Acta Petrologica Sinica, 18(3): 275−292 (in Chinese with English abstract).

    [36]

    Ren Tianlong, Wang Laiming, Zhu Xueqiang, Yu Xiaowei, Yang Zhenyi, Liu Handong, Guo Ruipeng, Tao Youbing. 2021. Early Cretaceous Weideshan Period granite in Jiaodong Area[J]. Shandong Land and Resources, 37(10): 1−12 (in Chinese with English abstract).

    [37]

    Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 22(4): 247–263.

    [38]

    Sláma J, Košler Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S, Morris G A, Nasdala L, Norberg N. 2008. Plešovice zircon: A new natural reference material for U–Pb and Hf isotopic microanalysis[J]. Chemical Geology, 249: 1−35. doi: 10.1016/j.chemgeo.2007.11.005

    [39]

    Song Mingchun, Yan Qingli. 2000. Characteristics of dioritic inclusions in Weideshan superunit and its magma origin in Jiaonan Area[J]. Shandong Land and Resources, (4): 16−21 (in Chinese with English abstract).

    [40]

    Song Mingchun, Wang Peicheng. 2003. Regional Geology of Shandong Province[M]. Jinan: Shandong Map Publishing House, 1–970 (in Chinese).

    [41]

    Song Mingchun. 2014. Jiaodong gold deposit and its tectonic magmatic background for mineralization[J]. Mineral Deposits, 33(S1): 131−132 (in Chinese).

    [42]

    Song Mingchun, Song Yingxin, Li Jie, Li Shiyong. 2015. Metallogenic series of gold and nonferrous metal deposits related to Cretaceous granites in eastern Shandong Peninsula, China[J]. Geotectonica et Etallogenia, 39(5): 828−843 (in Chinese with English abstract).

    [43]

    Song Mingchun, Lin Shaoyi, Yang Liqiang, Song Yingxin, Ding Zhengjiang, Li Jie, Li Shiyong, Zhou Mingling. 2020. Metallogenic model of Jiaodong Peninsula gold deposits[J]. Mineral Deposits, 39(2): 215−236 (in Chinese with English abstract).

    [44]

    Song Mingchun, Song Yingxin, Li Jie, Cao Chunguo, Ding Zhengjiang, Liu Xiao, Zhou Mingling, Li Shiyong. 2022. Stepwise prospecting method for deep–seated deposits: Take deep prospecting of ore concentration area of gold in Jiaodong Peninsula, China as an example[J]. Geology in China, 49(1): 1−15 (in Chinese with English abstract).

    [45]

    Song M C, Ding Z J, Zhang J J, Song Y X, Bo J W, Wang Y Q , Liu H B, Li S Y, Li J, Li R X, Wang B, Liu X D, Zhang L L, Dong L L, Li J, He C Y. 2021. Geology and mineralization of the sanshandao supergiant gold deposit (1200 t) in the Jiaodong Peninsula, China: A review[J]. China Geology, 4(4): 686–719.

    [46]

    Sun Jinfeng, Yang Jinhui, Wu Fuyuan. 2009. Application of in–situ isotopic analysis to granite genesis[J]. Earth Science Frontiers, 16(2): 129−139 (in Chinese with English abstract).

    [47]

    Sun Luwei, Wang Guangliang. 2014. Geological characteristics and ore prospecting directions of xingshabei molybdenum deposit in Yantai area of Jiaodong peninsula in Shandong Province[J]. Shandong Land and Resources, 30(4): 41−45 (in Chinese with English abstract).

    [48]

    Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society of London Special Publications, 42: 313−345. doi: 10.1144/GSL.SP.1989.042.01.19

    [49]

    Tian Jiepeng, Tian Jingxiang, Guo Ruipeng, Wei Cangshan, Wang Ligong, Yu Xiaowei, Li Xiuzhang, Huang Yongbo, Zhang Chunchi, Liu Handong, Zhu Peigang. 2016. Jiaodong–type gold deposit related to crust source remelting layered granite and crust–mantle mixed granodiorite[J]. Acta Geologica Sinica, 90(5): 987−996.

    [50]

    Vervoort J D, Patchett P J, Gehrels G E, Nutman A P. 1996. Constraints on early earth differentiation from hafnium and neodymium isotopes[J]. Nature, 379(6566): 624−627. doi: 10.1038/379624a0

    [51]

    Wan Zhongjie. 2017. Analysis on geological characteristics and the origin of Nanren iron deposit in Changyi City of Shandong Province[J]. Shandong Land and Resources, 33(8): 27−32 (in Chinese with English abstract).

    [52]

    Wang Laiming, Ren Tianlong, Liu Handong, Ning Zhenguo, Yu Xiaowei, Guo Ruipeng, Hou Jianhua, Zhu Xueqiang. 2021. Division of Mesozoic granites in Jiaodong Area[J]. Shandong Land and Resources, 37(8): 1−14 (in Chinese with English abstract).

    [53]

    Watson E B, Harrison T M. 1983. zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. earth planet[J]. Earth and Planetary Science Letters, 64(2): 295−304. doi: 10.1016/0012-821X(83)90211-X

    [54]

    Wen Bojie, Fan Hongrui, Hu Fangfang, Yang Kuifeng, Liu Xuan, Cai Yachun, Sun Zhifu, Sun Zongfeng. 2015. The genesis of pegmatite–type molybdenum mineralization in Sanshandao, and their implications for molybdenum deposit in Jiaodong, East China[J]. Acta Petrologica Sinica, 31(4): 1002−1014 (in Chinese with English abstract).

    [55]

    Wen Chunqi, Duo Ji. 1999. Methods of Ore Deposit Study[M]. Chengdu: Sichuan Science and Technology Press, 1–202 (in Chinese with English abstract).

    [56]

    Whalen J, Currie K, Chappell B. 1987. A–type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, (4): 95.

    [57]

    Wilson M. 1989. Igneous Petrogenesis: A Global Tectonic Approach[M]. London: Chapman & Hall, 466.

    [58]

    Wright J B. 1969. A simple alkalinity ratio and its application to questions of non–orogenic granite genesis[J]. Geological Magazine, 106(4): 370−384. doi: 10.1017/S0016756800058222

    [59]

    Wu F Y, Yang Y H, Xie L W, Yang J H, Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology[J]. Chemical Geology, 234(1/2): 105−126.

    [60]

    Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu–Hf isotopic systematics and thier applications in petrology[J]. Acta Petrologica Sinica, 23(2): 185−220 (in Chinese with English abstract).

    [61]

    Wu Yuanbao, Zheng Yongfei. 2004. Genetic mineralogy of zircon and its constraints on U–Pb age interpretation[J]. Chinese Science Bulletin, 49(16): 1589−1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589

    [62]

    Xu Yigang, Wu Xiangyang, Luo Zhenyu, Ma Jinlong, Huang Xiaolong, Xie Liewen. 2007. Zircon Hf isotope compositions of Middle Jurassic–Early Cretaceous intrusions in Shandong Province and its implications[J]. Acta Petrologica Sinica, 23(2): 307−316 (in Chinese with English abstract).

    [63]

    Yang Liqiang, Deng Jun, Wang Zhongliang, Zhang Liang, Guo Linnan, Song Mingchun, Zheng Xiaoli. 2014. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China[J]. Acta Petrologica Sinica, 30(9): 2447−2467 (in Chinese with English abstract).

    [64]

    Yang K F, Fan H R, Santosh M, Hu F F, Wilde S A, Lan T G, Lu L N, Liu Y S. 2012. Reactivation of the archean lower crust: Implications for zircon geochronology, elemental and Sr–Nd–Hf isotopic geochemistry of Late Mesozoic granitoids from northwestern Jiaodong terrane, the North China craton[J]. Lithos, 146/147(8): 112−127.

    [65]

    Zeng Fanyu. 2019. Analysis on geological characteristics and the origin of Wazi iron deposit in Shandong[J]. Mineral Exploration, 10(8): 1928−1933 (in Chinese with English abstract).

    [66]

    Zhang Lishi, Sun Fengyue, Li Bile, Qian Ye, Zhang Yajing, Wang Li, Wang Linlin. 2021. Petrogenesis and tectonic setting of granitoids in the Fu'anpu molybdenum deposit, Lesser Xing’an–Zhangguangcai range metallogenic belt: Constraints from element geochemistry, zircon U–Pb geochronology and Sr– Nd– Hf isotopes[J]. Acta Geologica Sinica, 95(8): 2471−2492 (in Chinese with English abstract).

    [67]

    Zhang Qi, Wang Yan, Pan Guoqiang, Li Cengdong, Jin Weijun. 2008. Sources of granites: Some crucial questions on granite study (4)[J]. Acta Petrologica Sinica, 24(6): 1193−1204.

    [68]

    Zhao Zhenhua, Xiong Xiaolin, Wang Qiang, Qiao Yulou. 2008. Someaspectson geochemistry of Nb and Ta[J]. Geochimica, 37(4): 304−320. (in Chinese with English abstract

    [69]

    Zhu B Q, Zhang J L, Tu X L, Chang X Y, Fan C Y, Liu Y, Liu J Y. 2001. Pb, Sr, and Nd isotopic features in organic matter from China and their implications for petroleum generation and migration[J]. Geochimica et Cosmochimica Acta, 65(15): 2555−2570. doi: 10.1016/S0016-7037(01)00608-1

    [70]

    Zindler A, Hart S. 1986. Chemical geodynamics[J]. Annual Review of Earth and Planetary Sciences, 14: 493−571. doi: 10.1146/annurev.ea.14.050186.002425

    [71]

    Zou Jian, Tang Wenlong, Ding Zhengjiang, Bo Junwei, LIi Zhiqiang, Yu Sen. 2021. Zircon U–Pb dating of the Yuangezhuang pluton in Muping of Shandong Province and its constraints on mineralization of Cu–Mo deposits[J]. Geology in China, 48(3): 883−899 (in Chinese with English abstract). doi: 10.12029/gc20210316

    [72]

    丁正江, 孙丰月, 刘福来, 刘建辉, 刘殿浩, 张丕建, 杜圣贤, 李兵. 2013. 胶东伟德山地区铜钼多金属矿锆石U–Pb法测年及其地质意义[J]. 岩石学报, 29(2): 607−618.

    [73]

    丁正江, 孙丰月, 刘建辉, 刘殿浩, 李碧乐, 张丕建, 钱烨, 李杰. 2012. 胶东邢家山钼钨矿床辉钼矿Re–Os同位素测年及其地质意义[J]. 岩石学报, 28(9): 2721−2732.

    [74]

    丁正江, 孙丰月, 李国华, 纪攀, 孔彦. 2015. 胶东邢家山地区燕山早期钼钨成矿母岩锆石U–Pb年龄及其意义[J]. 中国地质, 42(2): 556−569. doi: 10.3969/j.issn.1000-3657.2015.02.015

    [75]

    董学, 李大鹏, 赵睿, 王欣然, 王庆飞. 2020. 胶东泽头岩体锆石U–Pb年代学和岩石成因: 对区域早白垩世晚期成岩成矿作用的指示[J]. 岩石学报, 36(5): 1501−1514. doi: 10.18654/1000-0569/2020.05.11

    [76]

    董银峰, 徐金欣, 赵金, 李明波, 杜振明. 2015. 山东省莱州–安丘铁成矿带成矿规律探析[J]. 山东国土资源, 31(5): 7−12.

    [77]

    盖永升, 刘良, 康磊, 杨文强, 廖小莹, 王亚伟. 2015. 北阿尔金蛇绿混杂岩带中斜长花岗岩的成因及其地质意义[J]. 岩石学报, 31(9): 2549−2565.

    [78]

    郭晶, 朱学强, 任天龙, 戴广凯. 2019. 山东栖霞香夼地区多金属硫化物矿床外围隐爆–侵入角砾岩的发现及意义[J]. 山东国土资源, 35(1): 19−24.

    [79]

    郭敬辉, 陈福坤, 张晓曼, Siebel W, 翟明国. 2005. 苏鲁超高压带北部中生代岩浆侵入活动与同碰撞—碰撞后构造过程:锆石U-Pb年代学[J]. 岩石学报, 21(4): 1281−1301.

    [80]

    韩小梦, 段留安, 赵鹏飞, 王建田, 郭云成. 2024. 山东省胶莱盆地东北缘前垂柳金矿床黄铁矿Rb−Sr等时线年龄[J]. 中国地质, 51(1): 366−367.

    [81]

    华北, 高雪, 胡兆国, 梅贞华, 张之武, 孟银生, 张保涛, 赵磊. 2020. 兴蒙造山带西段乌珠新乌苏花岗岩岩石成因和构造背景: 地球化学、U–Pb年代学和Sr–Nd–Hf同位素约束[J]. 岩石学报, 36(5): 1426−1444. doi: 10.18654/1000-0569/2020.05.07

    [82]

    胡波. 2019. 胶东艾山–南宿岩体年代学、地球化学特征及构造意义[D]. 石家庄: 河北地质大学, 1–63.

    [83]

    李洪奎, 禚传源, 耿科, 梁太涛. 2017. 郯–庐断裂带陆内伸展构造: 以沂沭断裂带的表现特征为例[J]. 地学前缘, 24(2): 73−84.

    [84]

    李杰. 2012. 胶东地区钼−铜−铅锌多金属矿成矿作用及成矿模式[D]. 成都: 成都理工大学, 1–127.

    [85]

    李杰, 宋明春, 王美云, 李世勇, 周明岭, 倪师军, 张成江, 丁正江, 岳跃破. 2013. 胶东尚家庄钼矿床Re–Os同位素年龄及其地质意义[J]. 中国地质, 40(5): 1612−1621. doi: 10.3969/j.issn.1000-3657.2013.05.024

    [86]

    李杰, 宋明春, 李世勇, 周晓剑, 宋英昕, 丁正江, 杨立新, 王珊珊, 姜帆, 李倩. 2016. 胶东大邓格金多金属矿床地质地球化学特征及意义[J]. 中国地质, 43(1): 221−237. doi: 10.3969/j.issn.1000-3657.2016.01.016

    [87]

    李秀章, 刘汉栋, 于晓卫, 王立功, 祝培刚, 郭瑞朋. 2021. 胶西北秦姑庵花岗岩体岩石成因及对金成矿的启示: 元素地球化学、锆石U–Pb 年代学及Lu–Hf同位素制约[J]. 山东国土资源, 37(12): 1−16. doi: 10.12128/j.issn.1672-6979.2021.12.001

    [88]

    李秀章, 王立功, 李衣鑫, 王英鹏, 于晓卫, 张文, 郭瑞朋, 刘汉栋. 2022. 胶东艾山岩体二长花岗岩地球化学、锆石U–Pb年代学及Lu–Hf同位素特征研究[J]. 现代地质, 36(1): 333−346.

    [89]

    李增达, 于晓飞, 王全明, 杜泽忠, 曹强, 师明元, 王然. 2018. 胶东三佛山花岗岩的成因: 成岩物理化学条件、锆石U–Pb年代学及Sr–Nd同位素约束[J]. 岩石学报, 34(2): 447−468.

    [90]

    钱青, 钟孙霖, 李通艺, 温大任. 2002. 八达岭基性岩和高Ba–Sr花岗岩地球化学特征及成因探讨: 华北和大别–苏鲁造山带中生代岩浆岩的对比[J]. 岩石学报, 18(3): 275−292. doi: 10.3969/j.issn.1000-0569.2002.03.002

    [91]

    任天龙, 王来明, 朱学强, 于晓卫, 杨振毅, 刘汉栋, 郭瑞朋, 陶有兵. 2021. 胶东地区早白垩世伟德山期花岗岩[J]. 山东国土资源, 37(10): 1−12. doi: 10.12128/j.issn.1672-6979.2021.10.001

    [92]

    宋明春, 严庆利. 2000. 胶南地区伟德山超单元中闪长质包体的特征及岩浆成因[J]. 山东地质, (4): 16−21.

    [93]

    宋明春, 王沛成. 2003. 山东省区域地质[M]. 济南: 山东省地图出版社, 1–970.

    [94]

    宋明春. 2014. 胶东型金矿及其成矿的构造岩浆背景[J]. 矿床地质, 33(S1): 131−132.

    [95]

    宋明春, 宋英昕, 李杰, 李世勇. 2015. 胶东与白垩纪花岗岩有关的金及有色金属矿床成矿系列[J]. 大地构造与成矿学, 39(5): 828−843.

    [96]

    宋明春, 林少一, 杨立强, 宋英昕, 丁正江, 李杰, 李世勇, 周明岭. 2020. 胶东金矿成矿模式[J]. 矿床地质, 39(2): 215−236.

    [97]

    宋明春, 宋英昕, 李杰, 曹春国, 丁正江, 刘晓, 周明岭, 李世勇. 2022. 深部矿阶梯找矿方法: 以胶东金矿集区深部找矿为例[J]. 中国地质, 49(1): 1−15.

    [98]

    孙金凤, 杨进辉, 吴福元. 2009. 原位微区同位素分析在花岗岩成因研究中的应用[J]. 地学前缘, 16(2): 129−139.

    [99]

    孙璐伟, 王光良. 2014. 胶东半岛烟台地区杏山北钼矿床地质特征及其找矿预测[J]. 山东国土资源, 30(4): 41−45. doi: 10.3969/j.issn.1672-6979.2014.04.009

    [100]

    田杰鹏, 田京祥, 郭瑞朋, 韦昌山, 王立功, 于晓卫, 李秀章, 黄永波, 张春池, 刘汉栋, 祝培刚. 2016. 胶东型金矿: 与壳源重熔层状花岗岩和壳幔混合花岗闪长岩有关的金矿[J]. 地质学报, 90(5): 987−996.

    [101]

    万中杰. 2017. 山东省昌邑市南任铁矿地质特征及成因初探[J]. 山东国土资源, 33(8): 27−32.

    [102]

    王来明, 任天龙, 刘汉栋, 宁振国, 于晓卫, 郭瑞朋, 侯建华, 朱学强. 2021. 胶东地区中生代花岗岩划分[J]. 山东国土资源, 37(8): 1−14.

    [103]

    文博杰, 范宏瑞, 胡芳芳, 杨奎锋, 刘玄, 蔡亚春, 孙之夫, 孙宗锋. 2015. 胶西北三山岛伟晶岩型脉状钼矿化成因及对胶东钼成矿的指示意义[J]. 岩石学报, 31(4): 1002−1014.

    [104]

    温春齐, 多吉. 1999. 矿床学研究方法[M]. 成都: 四川科技出版社, 1–202.

    [105]

    吴福元, 李献华, 郑永飞, 高山. 2007. Lu–Hf同位素体系及其岩石学应用[J]. 岩石学报, 23(2): 185−220.

    [106]

    吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U–Pb年龄解释的制约[J]. 科学通报, 49(16): 1589−1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    [107]

    徐义刚, 巫祥阳, 罗震宇, 马金龙, 黄小龙, 谢烈文. 2007. 山东中侏罗世—早白垩世侵入岩的锆石Hf同位素组成及其意义[J]. 岩石学报, 23(2): 307−316. doi: 10.3969/j.issn.1000-0569.2007.02.011

    [108]

    杨立强, 邓军, 王中亮, 张良, 郭林楠, 宋明春, 郑小礼. 2014. 胶东中生代金成矿系统[J]. 岩石学报, 30(9): 2447−2467.

    [109]

    曾凡玉. 2019. 山东洼子铁矿地质特征及成因探讨[J]. 矿产勘查, 10(8): 1928−1933.

    [110]

    张立仕, 孙丰月, 李碧乐, 钱烨, 张雅静, 王力, 王琳琳. 2021. 小兴安岭–张广才岭成矿带福安堡钼矿区花岗岩类的岩石成因和构造背景: 元素地球化学、锆石U–Pb年龄和Sr–Nd–Hf同位素约束[J]. 地质学报, 95(8): 2471−2492.

    [111]

    张旗, 王焰, 潘国强, 李承东, 金惟俊. 2008. 花岗岩源岩问题——关于花岗岩研究的思考之四[J]. 岩石学报, 24(6): 1193−1204.

    [112]

    赵振华, 熊小林, 王强, 乔玉楼. 2008. 铌与钽的某些地球化学问题[J]. 地球化学, 37(4): 304−320. doi: 10.3321/j.issn:0379-1726.2008.04.005

    [113]

    邹键, 唐文龙, 丁正江, 薄军委, 李志强, 于森. 2021. 山东牟平院格庄岩体锆石U–Pb年龄及其对周缘铜钼多金属成矿的制约[J]. 中国地质, 48(3): 883−899.

  • 加载中

(12)

(6)

计量
  • 文章访问数:  592
  • PDF下载数:  35
  • 施引文献:  0
出版历程
收稿日期:  2021-12-27
修回日期:  2022-05-07
刊出日期:  2024-07-25

目录