中国地质调查局 中国地质科学院主办
科学出版社出版

陕西北洛河流域地下水水化学和同位素特征及其水质评价

周殷竹, 马涛, 袁磊, 李甫成, 韩双宝, 周金龙, 李勇. 2024. 陕西北洛河流域地下水水化学和同位素特征及其水质评价[J]. 中国地质, 51(2): 663-675. doi: 10.12029/gc20220401003
引用本文: 周殷竹, 马涛, 袁磊, 李甫成, 韩双宝, 周金龙, 李勇. 2024. 陕西北洛河流域地下水水化学和同位素特征及其水质评价[J]. 中国地质, 51(2): 663-675. doi: 10.12029/gc20220401003
ZHOU Yinzhu, MA Tao, YUAN Lei, LI Fucheng, HAN Shuangbao, ZHOU Jinlong, LI Yong. 2024. Hydrochemistry−isotope characteristics and quality assessment of groundwater in the Beiluo River Basin, Shaanxi Province[J]. Geology in China, 51(2): 663-675. doi: 10.12029/gc20220401003
Citation: ZHOU Yinzhu, MA Tao, YUAN Lei, LI Fucheng, HAN Shuangbao, ZHOU Jinlong, LI Yong. 2024. Hydrochemistry−isotope characteristics and quality assessment of groundwater in the Beiluo River Basin, Shaanxi Province[J]. Geology in China, 51(2): 663-675. doi: 10.12029/gc20220401003

陕西北洛河流域地下水水化学和同位素特征及其水质评价

  • 基金项目: 中国地质调查局项目(DD20190333)资助。
详细信息
    作者简介: 周殷竹,女,1990年生,高级工程师,主要从事水文地质和同位素水文地球化学研究;E-mail:zhouyinzhu@mail.cgs.gov.cn
    通讯作者: 韩双宝,男,1983年生,正高级工程师,主要从事水文地质与水资源研究;E-mail:hanshuangbao@mail.cgs.gov.cn
  • 中图分类号: X824; P641.3

Hydrochemistry−isotope characteristics and quality assessment of groundwater in the Beiluo River Basin, Shaanxi Province

  • Fund Project: Supported by the project of China Geological Survey (No.DD20190333).
More Information
    Author Bio: ZHOU Yinzhu, female, born in 1990, senior engineer, engaged in the research of hydrogeological survey and isotopic hydrogeochemistry; E-mail: yinzhu_zhou@qq.com .
    Corresponding author: HAN Shuangbao, male, born in 1983, professor level senior engineer, engaged in the research of hydrogeology and water resources; E-mail: hanshuangbao@mail.cgs.gov.cn.
  • 研究目的

    北洛河是黄河的重要二级支流,研究该流域典型支流地下水的水质状况对于黄河流域生态保护和高质量发展具有重要意义。

    研究方法

    本文以北洛河流域为主要对象,系统查明流域地下水水质现状,圈定劣质地下水分布区,为饮水安全提供保障。此外,对该区地下水水化学和D−18O同位素组成进行分析,研究地下水水化学特征及演化机制,揭示水文地质条件及人为因素对区域地下水水文地球化学特征的控制和影响作用。

    研究结果

    区内地下水水化学成分除受岩石风化和蒸发浓缩作用的共同控制之外,部分还受到人类活动的影响。D−18O同位素组成指示了地下水整体上受蒸发浓缩作用影响。

    结论

    上游碎屑岩中的石膏、盐岩等易溶矿物经溶滤进入地下水,下游松散孔隙水在蒸发浓缩的作用下积聚盐分导致上、下游地下水TDS较高;奥陶系岩溶含水岩组和新生界断陷盆地含水岩组地下水水化学组成主要受蒸发盐岩影响,此外还受到人类活动的影响。白垩系和石炭系—侏罗系含水岩组地下水主要分布于岩石风化区,说明该地下水水化学组分主要受岩石风化作用控制,且主要受硅酸盐岩和蒸发盐岩风化影响,人类活动影响的扰动相对较小。上、下游地区地下水受工矿活动影响较严重,中游地下水受工矿活动、农业活动、生活污水影响均较小,水质整体较好。

  • 加载中
  • 图 1  研究区位置及采样点分布图

    Figure 1. 

    图 2  水文地质剖面图

    Figure 2. 

    图 3  不同含水岩组地下水Piper三线图

    Figure 3. 

    图 4  沿水文地质剖面代表性地下水Piper三线图

    Figure 4. 

    图 5  沿水文地质剖面代表性地下水TDS(a)、pH(b)、Fe(c)、γNa/γCl(d)、100×γSO4/γCl(e)和γ(Cl−Na)/γMg(f)箱型图

    Figure 5. 

    图 6  地表水、泉水和不同含水岩组地下水氘氧同位素组成

    Figure 6. 

    图 7  北洛河流域浅层地下水(a)和深层地下水(b)水质评价结果

    Figure 7. 

    图 8  不同含水岩组地下水Gibbs图

    Figure 8. 

    图 9  不同含水岩组地下水γCa2+/γNa+γMg2+/γNa+γHCO3/γNa+关系

    Figure 9. 

    图 10  不同含水岩组地下水γSO42−/γCa2+γNO3/γCa2+关系

    Figure 10. 

    表 1  水质单项分析指标检测方法及检出限

    Table 1.  Detection methods and detection limitsof water quality indices

    检测指标检出限测试手段检测指标检出限测试手段检测指标检出限测试手段
    pH值0.10电感耦合等离子体发生光谱NO3/(mg/L)0.02离子色谱Mn/(mg/L)0.0002电感耦合等离子体发生光谱
    K+/(mg/L)0.01电感耦合等离子体发生光谱Br/(mg/L)0.30离子色谱Sr/(mg/L)0.001电感耦合等离子体发生光谱
    Na+/(mg/L)0.01电感耦合等离子体发生光谱Cr6+/(mg/L)0.04紫外可见分光光度计Li/(μg/L)5.00电感耦合等离子体质谱
    Ca2+/(mg/L)0.004电感耦合等离子体发生光谱H2SiO3/(mg/L)0.06紫外可见分光光度计Cr/(μg/L)1.00电感耦合等离子体质谱
    Mg2+/(mg/L)0.01电感耦合等离子体发生光谱NH4+/(mg/L)0.04紫外可见分光光度计Cu/(μg/L)0.50电感耦合等离子体质谱
    HCO3/(mg/L)5.00酸式滴定NO2/(mg/L)0.00紫外可见分光光度计Zn/(μg/L)1.00电感耦合等离子体质谱
    CO32−/(mg/L)5.00酸式滴定PO43−/(mg/L)0.10紫外可见分光光度计As/(μg/L)1.00电感耦合等离子体质谱
    OH/(mg/L)2.00酸式滴定TH/(mg/L)10.00酸式滴定Se/(μg/L)1.00电感耦合等离子体质谱
    Cl/(mg/L)0.10离子色谱COD/(mg/L)0.04滴定Cd/(μg/L)0.02电感耦合等离子体质谱
    SO42−/(mg/L)0.20离子色谱TDS/(mg/L)4.00万分之一天平Hg/(μg/L)0.55电感耦合等离子体质谱
    F/(mg/L)0.006离子色谱Fe/(mg/L)0.002电感耦合等离子体发生光谱Pb/(μg/L)0.05电感耦合等离子体质谱
    下载: 导出CSV

    表 2  北洛河流域不同含水岩组地下水水化学指标与组合特征参数统计值

    Table 2.  Statistics of hydrochemical indices and characteristic parameters of groundwater in different aquifer groups in Beiluo River Basin

    水化学指标 白垩系含水岩组
    地下水 (n=42)
    石炭系—侏罗系含水岩组
    地下水 (n=46)
    奥陶系岩溶含水岩组
    地下水 (n=131)
    新生界断陷盆地含水岩组
    地下水 (n=59)
    pH 7.40~9.90/8.07 7.35~8.51/7.94 7.18~8.73/7.83 7.26~9.40/7.98
    TDS/(mg/L) 230.0~5883.00/869.00 218.00~1815.00/525.00 242.00~11819.00/1295.0 290.00~7910.00/2774.00
    TH/(mg/L) 11.60~3125.0/437.00 108.00~1031.00/270.00 82.10~5240.00/516.00 107.00~3815.00/856.00
    K+ /(mg/L) 0.62~13.05/2.87 0.58~16.47/1.73 0.56~22.86/5.64 1.22~40.73/5.86
    Na+/(mg/L) 23.60~962.00/156 9.90~234.00/67.80 22.50~2729.00/301.00 21.44~2324.00/709.00
    Ca2+ /(mg/L) 18.36~270.00/60.30 13.55~321.00/61.20 4.57~908.00/84.30 6.33~677.00/94.52
    Mg2+/(mg/L) 16.58~601.00/69.28 12.11~114.00/29.90 12.60~664.00/71.50 10.36~507.00/138.00
    Cl/(mg/L) 6.13~2255.22/183.00 4.48~87.60/21.50 3.55~5620.00/266.00 8.98~2581.00/602.00
    SO42−/(mg/L) 6.64~1401.00/189.00 4.09~195.00/47.52 3.00~2016.00/360.00 26.95~2976.00/858.00
    HCO3/(mg/L) 83.45~618.00/321.00 204.00~491.00/331.00 193.00~886.00/408.00 11.13~1060.00/504.00
    CO32−/(mg/L) <5.00~45.60/16.47 <5.00~33.44/13.59 <5.00~125.00/28.56 <5.00~140.00/34.99
    NO3/(mg/L) 1.28~375.50/42.33 0.30~251.80/22.68 0.46~736.60/37.55 0.19~1162.00/102.00
    F/(mg/L) 0.092~2.65/0.78 0.198~2.30/0.785 0.183~6.300/1.498 <0.006~6.300/2.021
    Cd /(mg/L) 0.003~0.15/0.036 0.003~0.046/0.020 0.001~0.373/0.054 0.001~0.328/0.057
    Cr6+/(mg/L) 0.005~0.19/0.037 0.005~0.030/0.015 0.004~0.556/0.071 0.004~0.334/0.082
    As/(mg/L) <0.001~0.009/0.004 <0.001~0.013/0.003 <0.001~0.267/0.017 <0.001~0.023/0.007
    δD/‰ −98.00~−62.34/−82.60 −67.19~−61.13/−64.44 −83.80~−65.60/−72.61 −79.90~−54.97/−66.30
    δ18O/‰ −12.40~−7.94/−10.57 −8.9~−8.08/−8.61 −10.5~−8.60/−9.54 −10.7~−7.30/−8.80
    γNa/γCl 0.66~14.23/3.99 0.81~20.14/6.18 0.60~35.71/4.80 0.90~27.18/3.14
    (100×γSO4)/γCl 27.00~792.00/142.00 35.00~472.00/155.00 15.00~1537.00/211.00 34.00~1060.00/141.00
    γ(Cl−Na)/γMg −2.93~0.43/−0.74 −3.00~0.07/−1.02 −9.64~0.93/−1.61 −19.92~0.16/−2.21
      注:“/”左侧数值为“最小值~最大值”,“/”右侧数值为“平均值”。
    下载: 导出CSV

    表 3  北洛河流域不同含水岩组地下水同位素组成

    Table 3.  Isotope composition of groundwater in different aquifer groups in the Beiluo River Basin

    同位素指标 白垩系含水岩组
    地下水 (n=11)
    石炭系—侏罗系含水岩组
    地下水 (n=0)
    奥陶系岩溶含水岩组
    地下水 (n=12)
    新生界断陷盆地含水岩组
    地下水 (n=19)
    δD/‰ −98.00~−62.34/−83.18 / −83.80~−65.60/−72.61 −79.90~−54.97/−66.30
    δ18O/‰ −12.40~−7.94/−10.69 / −10.5~−8.60/−9.54 −10.7~−7.30/−8.80
      注:“/”左侧数值为“最小值~最大值”,“/”右侧数值为“平均值”。
    下载: 导出CSV
  • [1]

    Abhijit M, Alan E F. 2008. Deeper groundwater chemistryand geochemical modeling of the arsenic affected western Bengal basin, West Bengal, India[J]. Applied Geochemistry, 23(4): 863−894. doi: 10.1016/j.apgeochem.2007.07.011

    [2]

    Dong Ying, Song Yougui, Zhang Maosheng, Lan Minwen, Fu Xiaofen, Liu Huifang, Ning Qiangqiang. 2019. Several key basic geological problems on the development of the Guanzhongurban agglomeration[J]. Northwestern Geology, 52(2): 12−26 (in Chinese with English abstract).

    [3]

    Gaillardet J, Dupré B, Louvat P, Allègre C. J. 1999. Global silicateweathering and CO2 consumption rates deduced from thechemistry of large rivers[J]. Chemical Geology, 159(1/4): 3−30. doi: 10.1016/S0009-2541(99)00031-5

    [4]

    Ge Fenli. 2013. Analysis of feature variation of water sediment and probing of reasons in upstream area of Beiluo River[J]. Journal of Water Resources and Water Engineering, 4: 145−150 (in Chinese with English abstract).

    [5]

    Gibbs R J. 1970. Mechanisms controlling world water chemistry[J]. Science, 170(3962): 1088−1090. doi: 10.1126/science.170.3962.1088

    [6]

    Han Shuangbao. 2021. Introduction of China Geological Survey project ‘Hydrogeological Survey of the Yellow River Basin’[J]. Geology in China, 48(6): 1664 (in Chinese).

    [7]

    Han Shuangbao, Li Fucheng, Wang Sai1, LiHaixue, Yuan Lei, Liu Jingtao, Shen Haoyong, Zhang Xueqing, Li Changqing, Wu Xi, Ma Tao, Wei Shibo, Zhao Minmin. 2021. Groundwater resource and eco−environmental problem of the Yellow River Basin[J]. Geology in China, 48(4): 1001−1019 (in Chinese with English abstract).

    [8]

    Han Shuangbao, Wang Sai, Zhao Minmin, Wu Xi, Yuan Lei, Li Haixue, Li Fucheng, Ma Tao, Li Wenpeng, Zheng Yan. 2023. Ecological environmental changes and its impact on water resources and water–sediments relationship in Beiluo River Basin[J]. Hydrogeology & Engineering Geology, 50(6): 14–24 (in Chinese with English abstract).

    [9]

    Jiang Guantao. 2016. Responses of Runoff and Sediment to Land Use Cover Changes in the Upper Reaches of Beiluo River Based on SWAT Model [D]. Yangling: Northwest Agriculture and Forestry University, 1−82(in Chinese with English abstract).

    [10]

    Jing Yong, Chen Fangli, Ge Fenli, Gu Mingxing. 2010. Characteristics of water and sediment in source area of Beiluohe River[J]. Hydrology, 4: 92−96 (in Chinese with English abstract).

    [11]

    Kang Yuan. 2008. Environmental Issue and Information System Construction of Oil Exploration and Exploitation in the Upper Stream of Beiluohe River in Northern Shaanxi Province [D]. Xi'an: Northwest University, 1−76 (in Chinese with English abstract).

    [12]

    Liang Xing, Zhang Jingwei, Lan Kun, Shen Shuai, Ma Teng. 2020. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Geological Science and Technology Information, 39(1): 21−33 (in Chinese with English abstract).

    [13]

    Luo Xinyan. 2021. Analysis on the transformation relationship between surface water and groundwater in the Yellow River Basin[J]. Mineral Resources and Geology, 35(3): 517−522 (in Chinese with English abstract).

    [14]

    Ma Tao, Li Wenli, Han Shuangbao, Zhang Hongqiang, Wang Wenke, Li Fucheng, Li Haixue, He Xubo, Zhao Meimei. 2023. Distribution characteristics, influencing factors and development potential of groundwater resources in Shaanxi Province of the Yellow River Basin[J]. Geology in China, 50(5): 1432−1445 (in Chinese with English abstract).

    [15]

    Ma Yukun. 2017. Analysis of water resources situation in the lower reaches of Beiluo River [J]. Shaanxi Water Resources, 6: 3, 15 (in Chinese with English abstract).

    [16]

    Pu Junbing, Yuan Daoxian, Jiang Yongjun, Gou Pengfei, Yin Jianjun. 2010. Hydrogeochemistry and environmental meaning of Chongqing subterranean karst streams in China[J]. Advances in Water Science, 21(5): 628−636 (in Chinese with English abstract).

    [17]

    Qiao Wen, Cao Wengeng, Gao Zhipeng, PanDeng, Ren Yu, Li Zeyan, Zhang Zhuo. 2022. Contrasting behaviors of groundwater arsenic and fluoride in the lower reaches of the Yellow River basin, China: Geochemical and modeling evidences [J]. Science of the Total Environment, 851(Pt 1): 158134.

    [18]

    Qin Pengyi, Xu Xianfeng, Cai Wutian, Li Guiheng, Wei Shenghui. 2020. Analysis on aquifers hydrochemical distribution characteristics and genesis of the alluvial fan in Anyang, Henan Province[J]. Hydrology, 40(6): 89−96 (in Chinese with English abstract).

    [19]

    Qin Wei, Zhu Qingke, Liu Guangquan, Zhang Yan. 2010. Regulation effects of runoff and sediment of ecological conservation in the upper reaches of Beiluo River[J]. Journal of Hydraulic Engineering, 11: 1325−1332 (in Chinese with English abstract).

    [20]

    Tan Kaijun, Zhang Fan, Yin Lu, Dai Dongdong, Qi Wen. 2012. Preservation conditions for formation water and hydrocarbon in Wuxia area, Junggar Basin[J]. Petroleum Geology & Experiment, 1: 36−39.

    [21]

    Tong Xiaoxia, Tang Hui, Gan Rong, Li Zitao, He Xinlin, Gu Shuqian. 2022. Characteristics and causes of changing groundwater quality in the boundary line of the middle and lower Yellow River (right bank)[J]. Water, 14(12): 1846. doi: 10.3390/w14121846

    [22]

    Wang Xueping, Li Wenzhe. 2010. Geological tectonics control on the karstic water in the south margin of the Ordos Basin[J]. Northwestern Geology, 43(3): 106−112 (in Chinese with English abstract).

    [23]

    Xing Lina, Guo Huaming, Zhan Yanhong. 2013. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain[J]. Journal of Asian Earth Sciences, 70−71: 250−264. doi: 10.1016/j.jseaes.2013.03.017

    [24]

    Xu Wenmei, Lian Zhenmin. 2007. Factors of vegetation change in Beiluo River Valley[J]. Journal of Yanan University (Social Science), 29(2): 79−81 (in Chinese with English abstract).

    [25]

    Yu Songyan, Xu Zongxue, Wu Wei, Li yanli. 2014. Spatial variation of water quality and its response to landuse in the Beiluo River Basin[J]. Acta Scientiae Circumstantiae, 34(5): 1309−1315 (in Chinese with English abstract).

    [26]

    Zhang Fan, Wang Guangcai, Zhang Maosheng, Sun Pingping, Han Xu, Guo Jiangbo. 2023. Identification of produced water and characteristics of hydrochemistry and stable hydrogen−oxygen isotopes of contaminated groundwater[J]. Northwestern Geology, 56(3): 98–108 (in Chinese with English abstract).

    [27]

    Zhao Ming, Huang Chunchang, Pang Jiangli, ZhaXiaochun, Yao Ping. 2011. Palaeo−flood hydrological studies in the middle reaches of Beiluo River[J]. Journal of Natural Disasters, 20(5): 155−161 (in Chinese with English abstract).

    [28]

    Zhi Chuanshun, Cao Wengeng, Wang Zhen, Li Zeyan. 2021. High−arsenic groundwater in paleochannels of the lower Yellow River, China: Distribution and genesis mechanisms[J]. Water, 13(3): 338. doi: 10.3390/w13030338

    [29]

    Zhou Qiaoli, Song Yumei, Zhou Yibo, Zhang Tuxiu, SuLiukun. 2019. Analysis of air and groundwater pollution in a municipal solid waste landfill site in Guangzhou[J]. Environmental Chemistry, 38(4): 761−767 (in Chinese with English abstract).

    [30]

    Zhu B Q, Yang X P, Rioual P, Qin X G, Liu Z T, Xiong Heigang, Yu Jingjie. 2011. Hydrogeochemistry of three watersheds (the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China[J]. Applied Geochemistry, 26(8): 1535−1548. doi: 10.1016/j.apgeochem.2011.06.018

    [31]

    董英, 宋友桂, 张茂省, 兰敏文, 付晓芬, 刘慧芳, 宁强强. 2019. 关中盆地城市群发展中几个关键基础地质问题[J]. 西北地质, 52(2): 12−26.

    [32]

    葛芬莉. 2013. 北洛河上游区水沙特性变化分析研究[J]. 水资源与水工程学报, 4: 145−150.

    [33]

    韩双宝. 2021. 中国地质调查局黄河流域水文地质调查工程简介[J]. 中国地质, 48(6): 1664.

    [34]

    韩双宝, 李甫成, 王赛, 李海学, 袁磊, 刘景涛, 申豪勇, 张学庆, 李长青, 吴玺, 马涛, 魏世博, 赵敏敏. 2021. 黄河流域地下水资源状况及其生态环境问题[J]. 中国地质, 48(4): 1001−1019.

    [35]

    韩双宝, 王赛, 赵敏敏, 吴玺, 袁磊, 李海学, 李甫成, 马涛, 李文鹏, 郑焰. 2023. 北洛河流域生态环境变迁及对水资源和水沙关系的影响[J]. 水文地质工程地质, 50(6): 14–24.

    [36]

    蒋观滔. 2016. 基于SWAT模型的北洛河上游土地利用/覆被变化水沙响应研究 [D]. 杨凌: 西北农林科技大学, 1−82.

    [37]

    井涌, 陈芳莉, 葛芬莉, 古明兴. 2010. 北洛河源头区水沙特性变化分析[J]. 水文, 4: 92−96.

    [38]

    康媛. 2008. 陕北北洛河上游石油勘探开发的环境问题及信息系统建设[D]. 西安: 西北大学, 1−76.

    [39]

    梁杏, 张婧玮, 蓝坤, 沈帅, 马腾. 2020. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技情报, 39(1): 21−33.

    [40]

    罗新燕. 2021. 黄河流域内地表水与地下水转化关系分析[J]. 矿产与地质, 35(3): 517−522.

    [41]

    马涛, 李文莉, 韩双宝, 张红强, 王文科, 李甫成, 李海学, 贺旭波, 赵梅梅. 2023. 黄河流域陕西省地下水资源分布特征、影响因素及开发潜力[J]. 中国地质, 50(5): 1432−1445.

    [42]

    马禹锟. 2017. 北洛河下游水资源情况及分析[J]. 陕西水利, 6: 3, 15.

    [43]

    蒲俊兵, 袁道先, 蒋勇军, 苟鹏飞, 殷建军. 2010. 重庆岩溶地下河水文地球化学特征及环境意义[J]. 水科学进展, 21(5): 628−636.

    [44]

    秦鹏一, 徐先锋, 蔡五田, 李贵恒, 魏盛辉. 2020. 河南安阳冲洪积扇含水层水化学分布特征及成因分析[J]. 水文, 40(6): 89−96.

    [45]

    秦伟, 朱清科, 刘广全, 张岩. 2010. 北洛河上游生态建设的水沙调控效应[J]. 水利学报, 11: 1325−1332.

    [46]

    谭开俊, 张帆, 尹路, 代冬冬, 齐雯. 2012. 准噶尔盆地乌夏地区地层水与油气保存条件[J]. 石油实验地质, 1: 36−39.

    [47]

    王学平, 李稳哲. 2010. 地质构造对鄂尔多斯盆地南缘岩溶地下水的控制作用[J]. 西北地质, 43(3): 106−112.

    [48]

    徐文梅, 廉振民. 2007. 试析北洛河流域植被变迁的原因[J]. 延安大学学报, 29(2): 79−81.

    [49]

    于松延, 徐宗学, 武玮, 李艳利. 2014. 北洛河流域水质空间异质性及其对土地利用结构的响应[J]. 环境科学学报, 34(5): 1309−1315.

    [50]

    张帆, 王广才, 张茂省, 孙萍萍, 韩绪, 郭江波. 2023. 产出水识别及受污染地下水水化学和氢氧稳定同位素特征[J]. 西北地质, 56(3): 98–108.

    [51]

    赵明, 黄春长, 庞奖励, 查小春, 姚平. 2011. 北洛河中游白水段峡谷全新世特大洪水水文学研究[J]. 自然灾害学报, 20(5): 155−161.

    [52]

    周巧丽, 宋玉梅, 周漪波, 张土秀, 苏流坤. 2019. 广州市某生活垃圾填埋场空气及地下水污染状况分析[J]. 环境化学, 38(4): 761−767.

  • 加载中

(10)

(3)

计量
  • 文章访问数:  1197
  • PDF下载数:  120
  • 施引文献:  0
出版历程
收稿日期:  2022-04-01
修回日期:  2023-01-17
刊出日期:  2024-03-25

目录