中国地质调查局 中国地质科学院主办
科学出版社出版

东秦岭伟晶岩型高纯石英矿地球化学、锆石U−Pb及Hf同位素研究:对高纯石英找矿方向的探讨

赵海波, 王红杰, 张勇, 马驰, 朱黎宽. 2024. 东秦岭伟晶岩型高纯石英矿地球化学、锆石U−Pb及Hf同位素研究:对高纯石英找矿方向的探讨[J]. 中国地质, 51(1): 42-56. doi: 10.12029/gc20220809002
引用本文: 赵海波, 王红杰, 张勇, 马驰, 朱黎宽. 2024. 东秦岭伟晶岩型高纯石英矿地球化学、锆石U−Pb及Hf同位素研究:对高纯石英找矿方向的探讨[J]. 中国地质, 51(1): 42-56. doi: 10.12029/gc20220809002
ZHAO Haibo, WANG Hongjie, ZHANG Yong, MA Chi, ZHU Likuan. 2024. Geochemistry, zircon U−Pb and Hf isotopes of the high−purity pegmatite−quartz deposits in the Eastern Qinling and discussion on its prospecting direction[J]. Geology in China, 51(1): 42-56. doi: 10.12029/gc20220809002
Citation: ZHAO Haibo, WANG Hongjie, ZHANG Yong, MA Chi, ZHU Likuan. 2024. Geochemistry, zircon U−Pb and Hf isotopes of the high−purity pegmatite−quartz deposits in the Eastern Qinling and discussion on its prospecting direction[J]. Geology in China, 51(1): 42-56. doi: 10.12029/gc20220809002

东秦岭伟晶岩型高纯石英矿地球化学、锆石U−Pb及Hf同位素研究:对高纯石英找矿方向的探讨

  • 基金项目: 中国地质调查局项目(DD20220978、DD20190186、DD20221698)和国家自然科学基金项目(42062006)联合资助。
详细信息
    作者简介: 赵海波,1986年生,男,硕士,副研究员,从事区域地质矿产调查与研究;E-mail: tiger_zhaohb@163.com
    通讯作者: 王红杰,1990年生,男,博士生,助理研究员,从事区域地质及造山带研究;E-mail: cugbhongjie@163.com
  • 中图分类号: P611

Geochemistry, zircon U−Pb and Hf isotopes of the high−purity pegmatite−quartz deposits in the Eastern Qinling and discussion on its prospecting direction

  • Fund Project: Supported by the projects of China Geological Survey (No.DD20220978, No.DD20190186, No.DD20221698) and the National Natural Science Foundation of China (No.42062006).
More Information
    Author Bio: ZHAO Haibo, born in 1986, male, master, associate researcher, engaged in regional geology and mineral resources investigation and research; E-mail: tiger_zhaohb@163.com .
    Corresponding author: WANG Hongjie, born in 1990, male, Ph.D. candidate, assistant researcher, engaged in regional geology and orogenic belt research; E-mail: cugbhongjie@163.com.
  • 研究目的

    高纯石英是战略性新兴产业的关键基础材料,是世界稀缺的战略性矿产资源。目前美国以Spruce−Pine花岗伟晶岩作为原料生产的4N8及以上高端石英砂产品几乎垄断国际市场。东秦岭4N级伟晶岩型高纯石英矿点的发现为研究高纯石英形成机制、实现找矿突破和建立成矿模型提供了难得的机遇。

    研究方法

    通过对东秦岭新发现的伟晶岩型高纯石英矿点开展野外调查,并与美国Spruce−Pine高纯石英矿床伟晶岩开展岩石地球化学、锆石U−Pb同位素年代学和Hf同位素等方面的对比研究。

    研究结果

    东秦岭10号高纯石英矿形成于早泥盆世,锆石U−Pb年龄为(406.8±0.8)Ma,稍早于美国Spruce−Pine的高纯石英花岗伟晶岩形成时代。东秦岭高纯石英矿点伟晶岩与美国Spruce−Pine高纯石英矿床伟晶岩形成温度均为600℃左右。东秦岭高纯石英矿点伟晶岩与美国Spruce−Pine高纯石英矿床伟晶岩具有相似的岩石地球化学特征,表现I型花岗岩和高分异演化特征,源区物质来源既有下地壳,也有幔源物质。仅通过对东秦岭高纯石英矿点伟晶岩和灰池子花岗岩体空间关系、形成时代和岩石地球化学特征,是不足以完全反演源区特征及成岩成矿过程,对于东秦岭高纯石英矿点伟晶岩和灰池子花岗岩体是否存在同源演化仍需要进一步研究。

    结论

    东秦岭与美国Spruce−Pine高纯石英矿床在花岗岩类型、岩浆特征和形成温度等方面具有相似性,为进一步揭示高纯石英成矿地质背景和实现找矿突破提供理论依据。

  • 加载中
  • 图 1  东秦岭伟晶岩分布图(据陈西京等,1993修改)

    Figure 1. 

    图 2  龙泉坪地区5号、10号高纯石英矿点分布地质简图

    Figure 2. 

    图 3  东秦岭10号、5号高纯石英矿点与Spruce−Pine伟晶岩岩相特征

    Figure 3. 

    图 4  东秦岭5号、10号伟晶岩脉和Spruce−Pine伟晶岩、灰池子花岗岩体TAS图解(a,底图据Middlemost, 1994)、A/CNK−A/NK图解(b,底图据Maniar and Piccoli, 1989)与SiO2−K2O图解(c,底图据Peccerillo and Taylor, 1976)(灰池子花岗岩数据据刘丙祥,2014; Spruce−Pine部分数据据张晔,2010

    Figure 4. 

    图 5  东秦岭伟晶岩、Spruce−Pine伟晶岩和灰池子花岗岩体球粒陨石标准化稀土元素配分图(a)及微量元素原始地幔标准化蛛网图(b)(球粒陨石标准化值据Anders和Grevesse, 1989;原始地幔标准化值据Sun和McDonough, 1989;灰池子花岗岩数据据刘丙祥, 2014;Spruce−Pine部分数据据张晔, 2010

    Figure 5. 

    图 6  东秦岭10号高纯石英矿点伟晶岩锆石U−Pb年龄谐和图及阴极发光图像

    Figure 6. 

    图 7  东秦岭5号、10号伟晶岩脉和Spruce−Pine伟晶岩、灰池子花岗岩体哈克图解

    Figure 7. 

    表 1  东秦岭10号、5号伟晶岩脉和Spruce−Pine伟晶岩主量元素(%)微量元素(10−6)分析测试结果

    Table 1.  Major (%) and trace (10−6) element analyzed result of No.10 and No.5 pegmatite dikes in the Eastern Qinling and Spruce−Pine pegmatites

    样品号 LD05-T1 LD05-T2 LD05-T3 LD10-T1 LD10-T2 LD10-T3 20SP01 SP01* SP02*
    SiO2 78.13 78.89 76.56 79.37 76.18 77.55 74.39 74.50 77.60
    TiO2 0.03 0.02 0.03 0.08 0.03 0.04 0.02 0.02 0.02
    Al2O3 12.74 12.22 13.70 11.30 13.08 12.24 14.31 15.60 12.95
    Fe2O3 0.25 0.14 0.31 0.41 0.02 0.05 1.28 0.27 0.15
    FeO 0.11 0.07 0.14 0.18 0.01 0.04 0.10 0.10 0.19
    MnO 0.03 0.02 0.04 0.01 0.00 0.00 0.10 0.02 0.02
    MgO 0.09 0.05 0.08 0.11 0.02 0.05 1.28 0.21 0.19
    CaO 0.49 0.48 0.64 0.39 0.36 0.30 5.53 1.54 1.15
    Na2O 2.87 3.64 3.91 1.85 1.91 1.58 1.79 6.62 4.76
    K2O 4.21 4.07 3.97 6.24 8.11 7.99 0.01 1.29 2.49
    P2O5 0.11 0.14 0.14 0.04 0.04 0.04 0.78 0.06 0.05
    总量 99.05 99.74 99.52 99.98 99.77 99.88 99.58 100.23 99.57
    σ 1.4 1.7 1.8 1.8 3.0 2.7 0.1 2.0 1.5
    DI 96.0 97.9 96.5 97.8 99.2 99.1 89.5 98.1 98.5
    TZr/℃ 609 601 648 611 611 554 796 657 526
    K2O+Na2O 7.08 7.71 7.88 8.09 10.02 9.57 1.80 7.91 7.25
    A/CNK 1.25 1.08 1.15 1.08 1.04 1.04 1.10 1.03 1.03
    A/NK 1.37 1.18 1.28 1.15 1.10 1.09 4.84 1.27 1.23
    AR 2.53 3.69 3.40 1.93 1.79 1.67 1.44 7.79 5.16
    FeOT/MgO 3.88 4.06 5.45 5.20 1.45 1.72 1.07 1.71 1.69
    Mg# 59.81 55.36 49.81 52.19 71.27 71.27 95.83 78.92 64.06
    Rb 255 223 223 270 213 279 32 26.3 60.7
    Ba 4.54 4.85 8.01 403 370 355 320 181 981
    Th 0.67 0.17 1.00 8.93 34.5 1.79 12.4 1.58 0.92
    U 15.2 7.16 22.7 7.38 11.8 3.36 8.83 1.25 1.48
    Nb 4.37 3.67 6.87 2.88 5.79 2.84 16.7 3.75 2.86
    Ta 0.95 0.87 1.69 1.08 2.09 1.01 1.32 0.28 0.31
    Sr 9.22 6.99 10.7 62.6 60.3 59.3 144 219 313
    Zr 10.6 9.20 19.5 10.8 10.9 5.33 181 30.0 3.10
    Hf 0.57 0.49 1.04 0.46 0.49 0.25 17.0 1.17 0.20
    Y 1.40 0.66 3.00 1.16 3.59 1.84 35.1 5.68 2.80
    La 0.89 0.23 1.27 0.91 3.41 0.47 5.54 3.00 1.66
    Ce 1.92 0.67 3.14 2.17 6.97 1.34 15.8 6.00 5.77
    Pr 0.19 0.05 0.31 0.19 0.76 0.06 1.85 0.68 0.33
    Nd 0.58 0.15 0.99 0.69 2.85 0.21 9.00 2.83 1.29
    Sm 0.18 0.06 0.36 0.19 0.71 0.07 5.77 0.93 0.43
    Eu 0.03 0.01 0.03 0.09 0.26 0.07 0.39 0.42 0.47
    Gd 0.16 0.07 0.36 0.17 0.62 0.13 8.20 1.26 0.55
    Tb 0.04 0.02 0.09 0.03 0.11 0.03 1.53 0.22 0.09
    Dy 0.25 0.11 0.55 0.17 0.59 0.23 7.47 1.25 0.55
    Ho 0.04 0.02 0.09 0.03 0.11 0.05 0.94 0.19 0.09
    Er 0.13 0.05 0.26 0.10 0.32 0.17 1.78 0.48 0.22
    Tm 0.03 0.01 0.05 0.02 0.05 0.03 0.21 0.06 0.03
    Yb 0.22 0.08 0.39 0.11 0.31 0.19 1.08 0.33 0.15
    Lu 0.03 0.01 0.06 0.02 0.04 0.03 0.13 0.05 0.02
    ∑REE 4.68 1.55 7.96 4.88 17.1 3.07 59.7 17.7 11.6
    ∑LREE/∑HREE 4.23 3.17 3.29 6.65 6.96 2.61 1.80 3.61 5.85
    (La/Yb)N 2.78 1.88 2.20 5.67 7.37 1.69 3.46 6.13 7.46
    (La/Sm)N 3.14 2.22 2.21 3.01 3.03 4.27 0.60 2.03 2.43
    δEu 0.47 0.56 0.28 1.55 1.16 2.11 0.18 1.19 2.95
    δCe 1.08 1.44 1.17 1.20 1.00 1.64 1.18 0.97 1.77
      注:*数据来自张晔,2010;FeOT=FeO+0.8998×Fe2O3;分异指数(DI) = Qz + Or + Ab + Ne + Lc + Kp;碱度率(AR)=[Al2O3+CaO+(Na2O+K2O)]/[Al2O3+CaO−(Na2O+K2O)],当SiO2>50,K2O/Na2O大于1而小于2.5时,Na2O+K2O=2Na2O;里特曼指数(σ) = (Na2O+K2O)2/(SiO2−43);Mg# =100×Mg2+/(Mg2++TFe2+)。
    下载: 导出CSV

    表 2  东秦岭10号高纯石英矿点伟晶岩LA−ICP−MS锆石U−Th−Pb测试数据

    Table 2.  LA−ICP−MS zircon U−Th−Pb isotopic data of the pegmatite of No.10 high−purity pegmatite−quartz deposits in the Eastern Qinling

    测点号 Th/10−6 U/10−6 Th/U 同位素比值 表面年龄/Ma
    207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
    1 170.7 6168.0 0.03 0.0547 0.0010 0.4897 0.0042 0.0654 0.0015 397.0 43.0 404.6 2.8 408.4 2.8
    2 176.5 6030.0 0.03 0.0555 0.0011 0.4950 0.0100 0.0651 0.0019 426.0 45.0 408.0 7.1 406.3 7.1
    3 289.9 8420.0 0.03 0.0549 0.0011 0.4935 0.0054 0.0652 0.0016 404.0 45.0 407.2 3.7 407.3 3.5
    4 152.7 5740.0 0.03 0.0550 0.0011 0.4936 0.0050 0.0648 0.0015 408.0 44.0 407.2 3.4 404.5 2.5
    5 426.0 10830.0 0.04 0.0542 0.0011 0.4897 0.0050 0.0652 0.0016 376.0 45.0 404.6 3.4 407.0 3.3
    6 138.4 4655.0 0.03 0.0552 0.0010 0.4990 0.0044 0.0654 0.0015 416.0 42.0 410.9 3.0 408.3 2.9
    7 156.8 5709.0 0.03 0.0550 0.0011 0.4962 0.0055 0.0652 0.0016 407.0 44.0 408.9 3.7 406.9 3.7
    8 89.1 3428.0 0.03 0.0543 0.0011 0.4877 0.0051 0.0650 0.0015 378.0 46.0 403.6 3.6 405.9 2.4
    9 331.6 9680.0 0.03 0.0551 0.0010 0.4977 0.0033 0.0653 0.0015 413.0 42.0 410.1 2.2 407.9 2.4
    10 339.4 9070.0 0.04 0.0548 0.0010 0.4939 0.0045 0.0652 0.0015 402.0 42.0 407.4 3.0 407.0 2.8
    11 176.8 5898.0 0.03 0.0548 0.0010 0.4894 0.0040 0.0648 0.0015 398.0 43.0 404.4 2.7 405.0 2.3
    12 244.0 7240.0 0.03 0.0547 0.0011 0.4929 0.0052 0.0652 0.0016 402.0 41.0 407.4 3.3 407.2 3.2
    13 185.6 6150.0 0.03 0.0544 0.0010 0.4899 0.0059 0.0654 0.0016 387.0 43.0 404.7 4.0 408.6 3.1
    下载: 导出CSV

    表 3  东秦岭10号高纯石英矿点伟晶岩主锆石Hf同位素分析结果

    Table 3.  Zircon Hf isotopic data of the pegmatite of No.10 high−purity pegmatite−quartz deposits in the Eastern Qinling

    锆石点号 年龄/Ma 174Yb/177Hf 176Hf/177Hf 2σ 176Lu/177Hf 2σ εHf(t) TDM/Ma TCDM/Ma
    1 408.4 0.093161 0.282669 0.000014 0.003118 0.000010 4.1 875 1114
    2 406.3 0.057485 0.282658 0.000011 0.001817 0.000016 4.1 859 1114
    3 407.3 0.083697 0.282650 0.000015 0.002843 0.000007 3.5 897 1152
    4 404.5 0.076034 0.282691 0.000014 0.002471 0.000002 5.1 827 1052
    5 407.0 0.103616 0.282712 0.000013 0.003486 0.000007 5.5 819 1023
    6 408.3 0.055215 0.282692 0.000014 0.001751 0.000009 5.3 810 1039
    7 406.9 0.088308 0.282690 0.000013 0.002834 0.000022 4.9 837 1061
    8 405.9 0.043717 0.282696 0.000013 0.001388 0.000014 5.6 795 1022
    9 407.9 0.098038 0.282668 0.000017 0.003175 0.000009 4.1 877 1116
    10 407.0 0.074028 0.282687 0.000014 0.002411 0.000003 5.0 831 1060
    11 405.0 0.064612 0.282685 0.000014 0.002093 0.000021 5.0 827 1059
    12 407.2 0.078494 0.282704 0.000016 0.002579 0.000006 5.5 811 1026
    13 408.6 0.080175 0.282699 0.000016 0.002571 0.000006 5.3 818 1036
    下载: 导出CSV

    表 4  东秦岭地区伟晶岩及灰池子花岗岩体年龄一览

    Table 4.  Age of the pegmatites and the Huizhi granitic pluton in the Eastern Qinling

    采样位置 样品岩性 年代学方法 年龄/Ma 谐和年龄区间/Ma 数据来源
    陕西光石沟 花岗伟晶岩 LA−ICP−MS独居石U−Th−Pb 399.6±0.8 武勇等,2022
    陕西光石沟 花岗伟晶岩 LA−ICP−MS独居石U−Th−Pb 400.2±4.3 武勇等,2022
    陕西光石沟 花岗伟晶岩 LA−ICP−MS独居石U−Th−Pb 400.8±2.4 武勇等,2022
    陕西光石沟 花岗伟晶岩 LA−ICP−MS独居石U−Th−Pb 403.5±3.6 武勇等,2022
    陈家庄屋沟村 含铀伟晶岩 LA−ICP−MS锆石U−Pb 404.3±1.4 395.1~409.4 王江波等,2020
    南阳山 稀有金属伟晶岩 LA−ICP−MS锆石U−Pb 406.2±5.2 Yuan et al., 2022
    龙泉坪 花岗伟晶岩 LA−ICP−MS锆石U−Pb 406.8±0.8 404.5~408.6 本文
    南阳山 稀有金属伟晶岩 LA−ICP−MS铌铁矿物U−Pb 406.8±3.3 Yuan et al., 2022
    南阳山 稀有金属伟晶岩 LA−MC−ICP−MS锡石U−Pb 410.6±7.9 Yuan et al., 2022
    陕西光石沟 黑云母花岗伟晶岩 LA−ICP−MS锆石U−Pb 413.6±2.4 袁峰等,2017
    陕西陈家庄 花岗伟晶岩 LA−ICP−MS锆石U−Pb 414±4 张帅等,2019
    陕西光石沟 黑云母花岗伟晶岩 LA−ICP−MS锆石U−Pb 415.1±2.6 袁峰等,2017
    陕西陈家庄 花岗伟晶岩 LA−ICP−MS锆石U−Pb 416±3 张帅等,2019
    陕西陈家庄 花岗伟晶岩 LA−ICP−MS锆石U−Pb 417±3 张帅等,2019
    龙泉坪 花岗伟晶岩 LA−ICP−MS独居石U−Pb 420.2±2.2 415~429 Zhang et al., 2022
    南阳山 锂辉石钠长石伟晶岩 LA−MC−ICP−MS锡石U−Pb 420±2 曾威等,2021
    灰池子 黑云母二长花岗岩 LA−ICP−MS锆石U−Pb 421±27 王涛等,2009
    灰池子 黑云母二长花岗岩 SIMS锆石U−Pb 434±7 王涛等,2009
    灰池子 花岗岩 LA−ICP−MS锆石U−Pb 454.9±7.7 431~480 刘丙祥,2014
    灰池子 花岗岩 LA−ICP−MS锆石U−Pb 457±13 420~486 刘丙祥,2014
    灰池子 花岗岩 LA−ICP−MS锆石U−Pb 460±3.9 440~473 刘丙祥,2014
    灰池子 花岗岩 LA−ICP−MS锆石U−Pb 462.8±6.0 446~485 刘丙祥,2014
    下载: 导出CSV
  • [1]

    Anders E, Grevesse N. 1989. Abundances of the elements: Meteoritic and solar[J]. Geochimica et Cosmochimica Acta, 53(1): 197−214. doi: 10.1016/0016-7037(89)90286-X

    [2]

    Cai Wenchun, Wang Tianyi, Gao Feng, Zhang Xiaoming, Wang Xueping. 2023. New discovery of Pegmatite type Be−Li−Sn−Ta deposit in the Luonan-Danfeng area, Shaanxi Province, Eastern Qinling Mountains[J]. Geology in China, 50(6): 1923–1924 (in Chinese).

    [3]

    Chappell B W. 1999. Aluminium saturation in I– and S–type granites and the characterization of fractionated haplogranites[J]. Lithos, 46: 535−551. doi: 10.1016/S0024-4937(98)00086-3

    [4]

    Chen Xijing, Wang Shurong, Zhang Xiuying. 1993. Basic Characteristics or Mineralization of Qinling Granite Pegmatite[M]. Beijing: Geological Publishing House, 8–70 (in Chinese).

    [5]

    Frost B R, Barnes C G, Collins W J, Arculus R J, Ellis D J, Frost C D. 2001. A geochemical classification for granitic rocks[J]. Journal of Petrology, 42(11): 2033−2048. doi: 10.1093/petrology/42.11.2033

    [6]

    Gtze J. 2009. Chemistry, textures and physical properties of quartz–geological interpretation and technical application[J]. Mineralogical Magazine, 73(4): 645−671. doi: 10.1180/minmag.2009.073.4.645

    [7]

    Gu Zhen'an, Tong Jifeng, Cui Yuansheng, Peng Shou, Su Guijun, Zhou Hongjin, Feng Huimin, Zhao Fei, Tian Guiping, Meng Qingjie, Hong Wei. 2019. Strategic research on nonmetallic mineral resources for building materials in China[J]. Engineering Science, 21(1): 104−112 (in Chinese with English abstract).

    [8]

    Jourdan A L, Vennemann T W, Mullis J, Ramseyer K, Spiers C J. 2009. Evidence of growth and sector zoning in hydrothermal quartz from Alpine veins[J]. European Journal of Mineralogy, 21(1): 219−231. doi: 10.1127/0935-1221/2009/0021-1881

    [9]

    Li Jiankang, Li Peng, Yan Qinggao, Liu Qiang, Xiong Xin. 2021. History of granitic pegmatite research in China[J]. Acta Geologica Sinica, 95(10): 2996−3016 (in Chinese with English abstract).

    [10]

    Liu Bingxiang. 2014. Magmatism and Crustal Evolution in the Eastern Section of the North Qinling Terrane[D] Hefei: University of Science and Technology of China, 1–260 (in Chinese).

    [11]

    Lu Xinxiang, Zhu Chaohui, Gu Demin, Zhang Huamian, Wu Mei, Wu Yan. 2010. The main geological and metallogenic characteristics of granitic pegmatite in Eastern Qinling belt[J]. Geological Review, 56(1): 21−30 (in Chinese with English abstract).

    [12]

    Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635−643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    [13]

    Middlemost E A. 1994. Naming materials in the magma/igneous rock system[J]. Earth–Science Reviews, 37(3/4): 215−224.

    [14]

    Paton C, Woodhead J D, Hellstrom J C, Hergt J M, Greig A, Maas R. 2010. Improved laser ablation U–Pb zircon geochronology through robust downhole fractionation correction[J]. Geochemistry, Geophysics, Geosystems, 11(3): Q0AA06.

    [15]

    Peccerillo A, Taylor S. 1976. Geochemistry of Eocene calc–alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63−81. doi: 10.1007/BF00384745

    [16]

    Pei Xiaoli. 2017. Magmatism in the Paleozoic of the North Qinling Mountains: Taking the Rich Water Complex and Qinling Pegmatite as Examples[D]. Guilin: Guilin University of Technology, 1–50 (in Chinese with English abstract).

    [17]

    Petford N, Atherton M. 1996. Na rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru[J]. Journal of Petrology, 37(6): 1491−1521. doi: 10.1093/petrology/37.6.1491

    [18]

    Pitcher W S. 1997. The Nature and Origin of Granite[M]. Springer Science & Business Media, 1–377.

    [19]

    Qin Kezhang, Zhou Qifeng, Tang Dongmei, Wang Chunlong. 2019. Types, internal structural patterns, mineralization and prospects of rare element pegmatites in East Qinling Mountain in comparison with features of Chinese Altay[J]. Mineral Deposits, 38(5): 970−982 (in Chinese with English abstract).

    [20]

    Qin Z W, Wu Y B, Wang H, Gao S, Zhu L Q, Zhou L, Yang S H. 2014. Geochronology, geochemistry, and isotope compositions of Piaochi S–type granitic intrusion in the Qinling orogen, central China: Petrogenesis and tectonic significance[J]. Lithos, 202/203: 347−362. doi: 10.1016/j.lithos.2014.06.006

    [21]

    Qin Z W, Wu Y B, Siebel W, Wang H, Fu J M, Lu Y Y, Shan L, Yu Y S. 2022. Source nature and magma evolution of I−type granites from the North Qinling orogen, China, revealed by zircon morphology and grain−scale variations in Hf−O isotope composition[J]. Lithos, 428: 106819.

    [22]

    Qiu Jiaji, Lin Jingqian. 1993. Petrochemistry[M]. Beijing: Geological Publishing House, 67 (in Chinese).

    [23]

    Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust–mantle recycling[J]. Journal of Petrology, 36(4): 891−931. doi: 10.1093/petrology/36.4.891

    [24]

    Rapp R, Shimizu N, Norman M, Applegate G. 1999. Reaction between slab–derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa[J]. Chemical Geology, 160(4): 335−356. doi: 10.1016/S0009-2541(99)00106-0

    [25]

    Rusk B, Koenig A, Lowers H. 2011. Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation–inductively coupled plasma–mass spectrometry[J]. American Mineralogist, 96(5/6): 703−708.

    [26]

    Smithies R. 2000. The Archaean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoic adakite[J]. Earth and Planetary Science Letters, 182(1): 115−125. doi: 10.1016/S0012-821X(00)00236-3

    [27]

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313–345.

    [28]

    Wang Jiangbo, Hou Xiaohua, Li Wanhua, Zhang Liang, Zhao Youdong, Chen Hongbin, Li Weihong. 2020. Metallogenic characteristics and metallogenic model of the pegmatite type uranium deposit in Danfeng area, Eastern Qinling Mountains[J]. Earth Science, 45(1): 61−71 (in Chinese with English abstract).

    [29]

    Wang Tao, Wang Xiaoxia, Tian Wei, Zhang Jianli, Li Wuping, Li San. 2009. North Qinling Paleozoic granite associations and their variation in space and time: Implications for orogenic processes in the orogens of central China[J]. Scientia Sinica (Terrae), 39(7): 949−971 (in Chinese with English abstract).

    [30]

    Wark D A, Watson E B. 2006. TitaniQ: A titanium–in–quartz geothermometer[J]. Contributions to Mineralogy and Petrology, 152(6): 743−754. doi: 10.1007/s00410-006-0132-1

    [31]

    Weil J A. 1984. A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz[J]. Physics & Chemistry of Minerals, 10(4): 149−165.

    [32]

    Wu Yong, Qin Mingkuan, Guo Dongfa, Cui Jianyong, Liu Hanbin, He Sheng. 2022. Metallogenic age of the Guangshigou pegmatite type uranium deposit, North Qinling: Constraints from U−Th−Pb dating of monazite[J]. Uranium Geology, 4: 698−706 (in Chinese with English abstract).

    [33]

    Yang Wenbo, Zhou Hai, Song Gongshe, Wu Peng, Wang Qiang. 2019. A preliminary study on the metallogenic regularity of rare metal mineral resources of granitic pegmatite type in Shangdan area, Shaanxi Province[J]. Nonferrous Metals (Mining Section), 71(1): 64−71 (in Chinese with English abstract).

    [34]

    Ye Tianzhu, Zhang Zhiyong, Xiao Qinghui, Pan Guitang, Feng Yanfang. 2010. Technical Requirements for Research on Metallogenic Geological Background[M]. Beijing: Geological Publishing House, 180–185 (in Chinese).

    [35]

    Yuan F, Jiang S Y, Wang C L, Jin G, Zhang J, Zhang H X, Hu X J. 2022. U–Pb geochronology of columbite–group mineral, cassiterite, and zircon and Hf isotopes for Devonian rare–metal pegmatite in the Nanyangshan deposit, North Qinling Orogenic Belt, China[J]. Ore Geology Reviews, 140: 104634 doi: 10.1016/j.oregeorev.2021.104634

    [36]

    Zeng Wei, Zhou Hongying, Sun Fengyue, Wang Jiaying, Bi Junhui, Cui Yurong, Chen Junqiang. 2021. Cassiterite U−Pb age of rare metal pegmatites in Guanpo area North Qinling, China[J]. Geological Bulletin of China, 40(12): 2179−2182. (in Chinese with English abstract).

    [37]

    Zhang Chengli, Liu Liang, Wang Tao, Wang Xiaoxia, Li Lei, Gong Qifu, Li Xiaofei. 2013. Granitic magmatism related to Early Paleozoic continental collision in the North Qinling belt[J]. Chinese Science Bulletin, 58(23): 2323−2329 (in Chinese with English abstract). doi: 10.1360/csb2013-58-23-2323

    [38]

    Zhang Guowei, Meng Qingren, Yu Zaoping, Sun Yong, Zhou Dingwu, Guo Anlin 1996. The orogenic process and dynamic characteristics of the Qinling orogenic belt[J]. Scientia Sinica (Terrae), (3): 193–200 (in Chinese).

    [39]

    Zhang Haiqi, Zhu Likuan, Zhao Haibo, Liu Lei, Guo Feng, Liu Guangxue, Yi Yuejun, Zhang Hongli. 2022. First discovery of the Longquanping pegmatitic high−purity quartz deposit in the area of Lushi, Henan: Implications for exploration[J]. Conservation and Utilization of Mineral Resources, 42(4): 153−158 (in Chinese with English abstract).

    [40]

    Zhang Hairui, Zhao Jiaolong, Yu Huiyang. 2019. Petrogenesis and tectonic implications of the Laohushan quartz diorite from the eastern part of North Qilian orogen, NW China[J]. Geological Journal of China Universities, 25(5): 641−653 (in Chinese with English abstract).

    [41]

    Zhang Kexin, Pan Guitang, He Weihong, Xiao Qinghui, Xu Yadong, Zhang Zhiyong, Lu Songnian, Deng Jinfu, Feng Yimin, Li Jinyi, Zhao Xiaoming, Xing Guangfu, Wang Yonghe, Yin Fuguang, Hao Guojie, Zhang Changjie, Zhang Jin, Gong Yiming. 2015. New scheme for stratigraphic division of China's tectonics[J]. Earth Science (Journal of China University of Geosciences), 40(2): 206−233 (in Chinese with English abstract). doi: 10.3799/dqkx.2015.016

    [42]

    Zhang Shuai, Liu Jiajun, Yuan Feng, Liu Gang, Wang Gongwen, Zhang Hongyuan, Zhang Hongyu. 2019. Zircon U−Pb geochronology and geochemistry of granites and pegmatites, and metallogenesis of related uranium from the Chenjiazhuang deposit, Shaanxi Province[J]. Earth Science Frontiers, 26(5): 270−289 (in Chinese with English abstract).

    [43]

    Zhang Y, Zhao H B, Liu L, Pan J Y, Zhu L K, Liu G Q, Zhan X T. 2021. Timing of granite pegmatite–type high–purity quartz deposit in the Eastern Qinling, China: Constraints from in–situ LA–ICP–MS trace analyses of quartz and monazite U–Pb dating[J]. Acta Geochimica, 41(2): 197−207.

    [44]

    Zhang Ye. 2010. Geology, Geochemical Characteristics, and High Purity Quartz Metallogenic Prospects of Spruce Pine in the United States and Altay Pegmatite in Xinjiang[D]. Nanjing: Nanjing University, 1–56 (in Chinese with English abstract).

    [45]

    Zhu Decheng, Mo Xuanxue, Wang Liquan, Zhao Zhidan, Niu Yaoling, Zhou Changyong, Yang Yueheng. 2009. Petrogenesis of highly fractionated I−type granites in the Chayu area of eastern Gangdese, Tibet: Constraints from zircon U−Pb geochronology, geochemistry and Sr−Nd−Hf isotopes[J]. Scientia Sinica (Terrae), 39(7): 833−848 (in Chinese with English abstract).

    [46]

    蔡文春, 王天毅, 高峰, 张小明, 王学平. 2023. 东秦岭陕西洛南—丹凤地区新发现伟晶岩型锂铍锡钽矿点[J]. 中国地质, 50(6): 1923–1924.

    [47]

    陈西京, 王淑荣, 张秀颖. 1993. 秦岭花岗伟晶岩基本特征或成矿作用[M]. 北京: 地质出版社, 8–70.

    [48]

    顾真安, 同继锋, 崔源声, 彭寿, 苏桂军, 周洪锦, 冯惠敏, 赵飞, 田桂萍, 孟庆洁, 洪伟. 2019. 建材非金属矿产资源强国战略研究[J]. 中国工程科学, 21(1): 104−112.

    [49]

    李建康, 李鹏, 严清高, 刘强, 熊欣. 2021. 中国花岗伟晶岩的研究历程及发展态势[J]. 地质学报, 95(10): 2996−3016.

    [50]

    刘丙祥. 2014. 北秦岭地体东段岩浆作用与地壳演化[D]. 合肥: 中国科学技术大学, 1–260.

    [51]

    卢欣祥, 祝朝辉, 谷德敏, 张画眠, 吴梅, 吴艳. 2010. 东秦岭花岗伟晶岩的基本地质矿化特征[J]. 地质论评, 56(1): 21−30.

    [52]

    裴小利. 2017. 北秦岭古生代的岩浆作用——以富水杂岩及秦岭伟晶岩为例[D]. 桂林: 桂林理工大学, 1–50.

    [53]

    秦克章, 周起凤, 唐冬梅, 王春龙. 2019. 东秦岭稀有金属伟晶岩的类型、内部结构、矿化及远景——兼与阿尔泰地区对比[J]. 矿床地质, 38(5): 970−982.

    [54]

    邱家骥, 林景仟. 1993. 岩石化学[M]. 北京: 地质出版社, 67.

    [55]

    王江波, 侯晓华, 李万华, 张良, 赵友东, 陈宏斌, 李卫红. 2020. 东秦岭丹凤地区伟晶岩型铀矿矿化特征与成矿模式[J]. 地球科学, 45(1): 61−71.

    [56]

    王涛, 王晓霞, 田伟, 张成立, 李伍平, 李舢. 2009. 北秦岭古生代花岗岩组合、岩浆时空演变及其对造山作用的启示[J]. 中国科学(D辑:地球科学), 39(7): 949−971.

    [57]

    武勇, 秦明宽, 郭冬发, 崔建勇, 刘汉彬, 何升. 2022. 北秦岭光石沟花岗伟晶岩型铀矿床成矿时代: 来自独居石原位微区U–Th–Pb定年约束[J]. 铀矿地质, 4: 698−706.

    [58]

    杨文博, 周海, 宋公社, 吴鹏, 王强. 2019. 陕西商丹地区花岗伟晶岩型稀有金属矿产成矿规律初探[J]. 有色金属(矿山部分), 71(1): 64−71.

    [59]

    叶天竺, 张智勇, 肖庆辉, 潘桂棠, 冯艳芳. 2010. 成矿地质背景研究技术要求[M]. 北京: 地质出版社, 180–185.

    [60]

    袁峰, 刘家军, 吕古贤, 沙亚洲, 张帅, 翟德高, 王功文, 张宏远, 刘刚, 杨尚松, 王菊婵, 仁王瑞. 2017. 北秦岭光石沟铀矿区花岗岩、伟晶岩锆石U–Pb年代学、地球化学及成因意义[J]. 地学前缘, 24(6): 25−45.

    [61]

    曾威, 周红英, 孙丰月, 王佳营, 毕君辉, 崔玉荣, 陈军强. 2021. 北秦岭官坡地区稀有金属伟晶岩锡石U–Pb年龄[J]. 地质通报, 40(12): 2179−2182.

    [62]

    张成立, 刘良, 王涛, 王晓霞, 李雷, 龚齐福, 李小菲. 2013. 北秦岭早古生代大陆碰撞过程中的花岗岩浆作用[J]. 科学通报, 58(23): 2323−2329.

    [63]

    张国伟, 孟庆任, 于在平, 孙勇, 周鼎武, 郭安林. 1996. 秦岭造山带的造山过程及其动力学特征[J]. 中国科学(D辑:地球科学), (3): 193−200.

    [64]

    张海啟, 朱黎宽, 赵海波, 刘磊, 郭峰, 刘广学, 伊跃军, 张宏丽. 2022. 河南卢氏龙泉坪伟晶岩型高纯石英矿床的首次发现及找矿意义[J]. 矿产保护与利用, 42(4): 153−158.

    [65]

    张海瑞, 赵姣龙, 于汇洋. 2019. 北祁连造山带东段老虎山石英闪长岩成因及其地质意义[J]. 高校地质学报, 25(5): 641−653.

    [66]

    张克信, 潘桂棠, 何卫红, 肖庆辉, 徐亚东, 张智勇, 陆松年, 邓晋福, 冯益民, 李锦轶, 赵小明, 邢光福, 王永和, 尹福光, 郝国杰, 张长捷, 张进, 龚一鸣. 2015. 中国构造–地层大区划分新方案[J]. 地球科学(中国地质大学学报), 40(2): 206−233.

    [67]

    张帅, 刘家军, 袁峰, 刘刚, 王功文, 张宏远, 张红雨. 2019. 陕西商丹陈家庄铀矿区花岗岩体和伟晶岩脉的U−Pb年龄、地球化学特征与铀成矿作用[J]. 地学前缘, 26(5): 270−289.

    [68]

    张晔. 2010. 美国Spruce Pine和新疆阿尔泰伟晶岩地质–地球化学特征和高纯石英成矿前景[D]. 南京: 南京大学, 1–56.

    [69]

    朱弟成, 莫宣学, 王立全, 赵志丹, 牛耀龄, 周长勇, 杨岳衡. 2009. 西藏冈底斯东部察隅高分异Ⅰ型花岗岩的成因: 锆石U–Pb年代学、地球化学和Sr–Nd–Hf同位素约束[J]. 中国科学(D辑:地球科学), 39(7): 833−848.

  • 加载中

(7)

(4)

计量
  • 文章访问数:  1415
  • PDF下载数:  116
  • 施引文献:  0
出版历程
收稿日期:  2022-08-09
修回日期:  2022-12-08
刊出日期:  2024-01-25

目录