Evaluation method and engineering application of in−situ stress of deep tight sandstone reservoir in the second member of Xujiahe Formation in Xiaoquan−Fenggu area, western Sichuan
-
摘要:
研究目的 川西坳陷孝泉—丰谷地区须二段砂岩气藏的勘探开发潜力巨大,但该地区埋藏较深且构造复杂、断缝系统多期叠加,使得地应力频繁变化,制约了该区井位轨迹设计与压裂改造的有效实施,故需对该区地应力大小进行精细评价,为工程开发提供建议从而提高产能。
研究方法 基于岩石力学、声发射实验及差应变分析等实验测试方法,并结合常规测井、特殊测井及水力压裂等资料分析,优选了适应于深层块状均质致密砂岩储层的地应力大小实验测试方法,并在单点地应力大小准确评价的基础之上,构建了研究区分构造变形单元分层的单井地应力大小连续测井解释模型,查明了纵向上地应力大小变化结构类型及分布规律。
研究结果 研究表明差应变分析法计算的地应力大小精确度最高,为更能够准确表征深层均质块状致密砂岩地应力大小的实验方法。测试结果显示须二段属于Ⅲ类地应力类型,处于走滑应力状态,存在部分逆冲挤压应力状态;在井点测试的基础上,形成了基于井壁影像反演的地应力大小评价技术;地应力大小结构变化在纵向上分为5种类型,其中南北向(SN)三级以上断层和南北向(SN)褶皱或北东东向(NEE)褶皱变形的高部位以低低高(LLH)型和低应力(LC)型为主,在小规模断层或平缓构造区以高低高(HLH)型或高低低(HLL)型为主。
结论 建议选择低低高(LLH)型地应力剖面进行工程开发,其纵向上可穿透更多含气层,同时避开底层底水,预防生产早期快速见水,故应选择二—三级南北向断层和南北或北东向纵弯褶皱区须二2中上段进行水力压裂改造。
Abstract:This paper is the result of oil and gas exploration survey engineering.
Objective Xiaoquan−Fenggu area in the western Sichuan Basin has huge potential for exploration and development of Xujiahe Formation gas reservoirs. However, due to the region's deep burial, complex structure, and multiple superimposed fault systems that cause frequent variation in stress orientation, effective well placement design and hydraulic fracturing practices have been limited. Therefore, it is necessary to evaluate the precise magnitude of in−situ stress in this area to provide recommendations for engineering development and increase production capacity.
Methods Experimental methods such as rock mechanics, acoustic emission testing, and differential strain analysis combined with conventional logging, special logging, and hydraulic fracturing data were used to experimentally test the in−situ stress magnitude in deep heterogeneous blocky tight sandstone reservoirs. Based on accurate evaluation of single−point in−situ stress magnitude, a logging interpretation model was established for the subdivision of tectonic units in the study area, examining structural variation of in−situ stress magnitude and distribution along a single well.
Results Our study showed that differential strain analysis provided the most accurate measurement of stress in heterogeneous tight sandstone reservoirs. Test results indicated that the Xujiahe Formation belongs to the type III in−situ stress category and exists in a strike−slip stress state with partial compression and thrust stress states. Based on single−point test data, we developed a technique to evaluate in−situ stress magnitude by utilizing borehole image inversion. Structural changes in in−situ stress magnitude were divided vertically into five types, whereby high positions of north−south (SN) faults with grades above three and folds in SN or northeast−trending (NEE) resulted predominantly in low−low−high (LLH) or low stress (LC) profiles. Meanwhile, small−scale faults or gentle deformation areas had high−low−high (HLH) or high−low−low (HLL) profiles.
Conclusion A low−low−high (LLH) stress profile was suggested for engineering development to penetrate more gas layers vertically, while avoiding bottom water and preventing rapid water breakthrough during early production. Therefore, it is recommended to select the second to third order north−south(SN) trending faults and north−south(SN) or northeast trending(NE) longitudinal flexure zones located in the middle−upper part of the second layer of the second member of Xujiahe Formation.
-
-
表 1 水力压裂法计算的地应力大小的数据结果
Table 1. Results of the magnitude of in-situ stress calculated using hydraulic fracturing
井号 层位 测试段中深/m 最大主应力/MPa 最小主应力/MPa 垂向主应力/MPa 井所在构造位置 CH127 须二 4581.50 141.35 101.35 114.61 F6上盘 GM2 须二1 4713.00 146.99 122.99 116.51 F23上盘 GM2 须二2 4776.00 150.31 122.31 116.19 F23上盘 GM2 须二3 4845.00 149.87 109.87 118.82 F23上盘 GM3 须二3 4920.00 157.31 125.31 121.15 H7上盘 GM4 须二4 4882.00 153.06 113.06 113.98 F44上盘 X10 须二2 4717.00 138.68 103.00 117.99 F24上盘 X10 须二6 5042.00 153.00 112.40 125.92 F24上盘 X10-2 须二2 4732.00 143.96 83.96 111.41 新场构造七郎庙高点 X10-2 须二4 4880.00 154.18 94.18 114.89 新场构造七郎庙高点 X10-2 须二4 4851.50 154.22 94.22 114.22 新场构造七郎庙高点 X11 须二4 4917.00 145.00 113.00 121.45 新场构造七郎庙高点北翼 X209 须二4 4868.00 153.66 104.46 124.16 新场构造七郎庙高点 X5 须二3 4880.00 155.05 107.05 119.68 F4上盘 X8-1H 须二2 4880.00 141.92 101.52 117.29 F3下盘 XC12 须二8 5250.13 162.31 102.31 128.76 孝泉构造 XS1 须二1 4496.00 127.37 87.37 112.03 F8上盘 XS101 须二1 4598.00 144.79 112.79 114.12 F9-1上盘 XS101 须二2 4807.00 149.07 109.07 120.25 F9-1上盘 XS101 须二2 4786.00 150.43 110.43 118.79 F9-1上盘 XS101 须二2 4709.00 144.63 104.63 115.49 F9-1上盘 XS101 须二2 4634.00 143.50 103.50 112.29 F9-1上盘 表 2 孝泉—丰谷地区须二段声发射实验测试的三向应力值的测试结果数据
Table 2. Test results of the three−direction stress value of the acoustic emission test of the second member of the Xuxujiahe Formation in the Xiaoquan–Fenggu area
井号 层位 井深/m Kaiser点应力值/MPa 最大主应力/MPa 最小主应力/MPa 垂向主应力/MPa 0° 45° 90° 垂直 XS1 须二1 4487.00 101.33 82.10 88.62 101.29 118.76 90.04 110.71 X11 须二2 4762.24 116.16 92.74 99.78 119.56 135.26 100.68 129.56 CG561 须二4 4943.80 112.74 89.51 97.28 109.74 132.71 98.07 120.12 XC12 须二4 4766.83 111.67 95.32 106.53 114.13 133.13 105.09 124.14 X501 须二6 5270.70 120.87 99.48 110.79 117.80 144.01 109.79 128.87 表 3 孝泉—丰谷地区须二段差应变实验测试的三向应力值的测试结果数据
Table 3. Test results of triaxial stress value of the second member of Xujiahe Formation in Xiaoquan–Fenggu area
井号 层位 深度/m 三向主应力/MPa 最大主应力 最小主应力 垂向主应力 CX560 须二2 4810.97 141.00 102.00 125.00 CH127 须二1 4566.14 135.09 100.65 111.87 CH127 须二2 4639.29 137.60 104.72 113.66 X10 须二4 4882.06 148.86 107.93 119.61 X10 须二4 4884.04 140.75 104.76 119.66 表 4 研究区样品地应力大小计算实例
Table 4. Calculation example of in-situ stress of samples in the study area
样品编号 深度/m 诱导缝形态 差应力系数 端面尺寸/mm Δd/μm 弹性模量/GPa 泊松比 最大水平主应力/MPa 最小水平主应力/MPa dmax dmin X10井 4928.92 马鞍形 0.25~0.30 69.207 69.157 50 45.359 0.182 120.23~138.72 92.48~110.98 表 5 不同构造变形单元内不同层位构造应力系数反算结果
Table 5. Back−calculation results of tectonic stress coefficient of different layers in different tectonic deformation units
层位 构造应力系数 构造变形单元 新场 合兴场 丰谷 TX21–TX23 A 0.982 1.102 1.060 B 0.510 0.650 0.610 TX24–TX210 A 1.065 1.110 1.105 B 0.624 0.660 0.648 -
[1] Cai Meifeng. 1993. Review of principles and methods for rock stress measurement[J]. Chinese Journal of Rock Mechanics and Engineering, 12(3): 275−283 (in Chinese with English abstract).
[2] Chen Nian, Wang Chenghu, Gao Guiyun, Wang Pu. 2021. Characteristics of in–situ stress field in the powerhouse area on the right bank of Baihetan based on stress polygon and borehole breakout method[J]. Rock and Soil Mechanics, 42(12): 3376−3384 (in Chinese with English abstract).
[3] Cheng Yuanfang, Shen Haichao, Zhao Yizhong. 2008. A simplified differential strain analysis stress method for in–situ stress measurement[J]. Oil Drilling and Production Technology, 30(2): 61−64 (in Chinese with English abstract).
[4] Dai Jinxing, Ni Yunyan, Wu Xiaoqi. 2012. Tight gas in China and its significance in exploration and exploitation[J]. Petroleum Exploration and Development, 39(3): 257−264 (in Chinese with English abstract).
[5] Fu Xiaomin, Wang Xudong. 2007. The research on data processing about in–Situ stress measurement with AE[J]. Research and Exploration in Laboratory, (11): 296−299 (in Chinese with English abstract).
[6] He Jianhua, Cao Feng, Deng Hucheng, Wang Yuanyuan, Li Yong, Xu Qinglong. 2023. Evaluation of in–situ stress in dense sandstone reservoirs in the second member of Xujiahe formation of the HC area of the Sichuan Basin and its application to dense sandstone gas development[J]. Geology in China: 50(4): 1107–1121 (in Chinese with English abstract).
[7] Huang Rongzun, Zhuang Jinjiang. 1986. A new method for predicting formation fracture pressure[J]. Oil Drilling and Production Technology, (3): 1−14 (in Chinese).
[8] Jia Chengzao, Zheng Min, Zhang Yongfeng. 2012. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 39(2): 129−136 (in Chinese with English abstract).
[9] Jiang Yongdong, Xian Xuefu, Xu Jiang. 2005. Research on application of Kaiser effect of acoustic emission to measuring initial stress in rock mass[J]. Rock and Soil Mechanics, 26(6): 946−950 (in Chinese with English abstract).
[10] Li Guoxin, Lei Zhengdong, Dong Weihong, Wang Hongyan, Zheng Xingfan, Tan Jian. 2022. Progress, challenges and prospects of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 27(1): 1−11 (in Chinese with English abstract).
[11] Liu Yaqun, Li Haibo, Jing Feng, Luo Chaowen, Chen Bingrui, Li Junru, Zhou Qingchun. 2007. Determination of in–situ stress by hydraulic fracturing tests on preexisting fractures considering stress gradient and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 26(6): 1145−1149 (in Chinese with English abstract).
[12] Mao H Y, Luo T T, Lai F Q, Zhang G T, Zhong L L. 2019. Experimental analysis and logging evaluation of in–situ stress of mud shale reservoir: Taking the deep shale gas reservoir of Longmaxi Formation in western Chongqing as an example[J]. IOP Conference Series:Earth and Environmental Science, 384(1): 012129.
[13] Qiu Zhen, Zou Caineng, Li Jianzhong, Guo Qiulin, Wu Xiaozhi, Hou Lianhua. 2013. Unconventional petroleum resources assessment: Progress and future prospects[J]. Natural Gas Geoscience, 24(2): 238−246 (in Chinese with English abstract).
[14] Schmitt D R, Currie C A, Zhang L. 2012. Crustal stress determination from boreholes and rock cores: Fundamental principles[J]. Tectonophysics, 580: 1−26. doi: 10.1016/j.tecto.2012.08.029
[15] Shen Haichao, Cheng Yuanyuan, Wang Jingyin, Zhao Yizhong, Zhang Jianguo. 2008. Principal direction differential strain method for in–situ stress measurement and application[J]. Xinjiang Petroleum Geology, (2): 250−252 (in Chinese with English abstract).
[16] Shi Lin, Zhang Xudong, Jin Yan, Chen Mian. 2004. New method for measurement of in–situ stresses at great depth[J]. Chinese Journal of Rock Mechanics and Engineering, (14): 2355−2358 (in Chinese with English abstract).
[17] Wang Chenghu, Gao Guiyun, Wang Hong, Wang Pu. 2020. Integrated determination of principal stress and tensile strength of rock based on the laboratory and field hydraulic fracturing tests[J]. Journal of Geomechanics, 26(2): 167−174 (in Chinese with English abstract).
[18] Wang Pu, Wang Chenghu, Yang Ruhua, Hou Zhengyang, Wang Hong. 2019. Preliminary investigation on the deep rock stresses prediction method based on stress polygon and focal mechanism solution[J]. Rock and Soil Mechanics, 40(11): 4486−4496 (in Chinese with English abstract).
[19] Wang Xiaoqiong, Ge Hongkui, Song Lili, Hetai Ming, Xinwei. 2011. Experimental study of two types of rock sample acoustic emission events and Kaiser effect point recognition approach[J]. Chinese Journal of Rock Mechanics and Engineering, 30(3): 580−588 (in Chinese with English abstract).
[20] Yin Shuai, Ding Wenlong, Lin Lifei, Liu Hanlin, Li Airong. 2023. Characteristics and the controlling effect on hydrocarbon accumulation of fractures in Yanchang Formation in Zhidan–Wuqi area, western Ordos Basin[J]. Earth Science, 48(7): 2614−2629 (in Chinese with English abstract).
[21] Yin Shuai, Sun Xiaoguang, Wu Zhonghu, Wang Yingbin, Zhao Jingzhou, Sun Weihao, Yan Haolin. 2022. Coupling control of tectonic evolution and fractures on the Upper Paleozoic gas reservoirs in the northeastern margin of the Ordos Basin[J]. Journal of Central South University (Science and Technology), 53(9): 3724−3737 (in Chinese with English abstract).
[22] Yin Xingyao, Ma Ni, Ma Zhengqian, Zong Zhaoyun. 2018. Review of in–situ stress prediction technology[J]. Geophysical Prospecting for Petroleum, 57(4): 488−504 (in Chinese with English abstract).
[23] Zhang Chongyuan, Wu Manlu, Chen Qunze, Liao Chunting, Feng Chengjun. 2012. Reviews of in–situ stress measurement methods[J]. Journal of Henan Polytechnic University (Natural Science), 31(3): 305−310 (in Chinese with English abstract).
[24] Zhang Jincai, Fan Xin, Huang Zhiwen, Liu Zhongqun, Qi Yuanchang. 2021. Assessment of anisotropic in–situ stressses in the upper Triassic Xujiahe Formation reservoirs in Western Sichuan Depression of the Sichuan Basin[J]. Oil and Gas Geology, 42(4): 963−972 (in Chinese with English abstract).
[25] Zhang Kang, Zhang Liqin, Liu Dongmei. 2022. Situation of China’s oil and gas exploration and development in recent years and relevant suggestions[J]. Acta Petrolei Sinica, 43(1): 15−28,111 (in Chinese with English abstract). doi: 10.1038/s41401-021-00637-0
[26] Zhao Gang, Dong Shier. 2009. The theory of the measurement of ground stress by hydraulic fracturing method and its application[J]. Shanxi Architecture, 35(36): 77−78 (in Chinese with English abstract).
[27] Zheng Herong, Liu Zhongqun, Xu Shilin, Liu Zhenfeng, Liu Junlong, Huang Zhiwen, Huang Yanqing, Shi Zhiliang, Wu Qingzhao, Fan Lingxiao, Gao Jinhui. 2021. Progress and key research directions of tight gas exploration and development in Xujiahe Formation, Sinopec exploration areas, Sichuan Basin[J]. Oil and Gas Geology, 42(4): 765−783 (in Chinese with English abstract).
[28] Zhou Wen. 2006. The Characteristics of In–situ Earth Stress and its Application Research in Engineering Geology of Petroleum on Compact Reservoir in Western Sichuan Depression[D]. Chengdu: Chengdu University of Technology, 1–142 (in Chinese with English abstract).
[29] Zhu Haiyan, Song Yu jia, Xu Yun, Li Kuidong, Tang Xuanhe. 2021. Four–dimensional in–situ stress evolution of shale gas reservoirs and its impact on infill well complex fractures propagation[J]. Acta Petrolei Sinica, 42(9): 1224−1236 (in Chinese with English abstract).
[30] Ziegler M, Valley B. 2021. Evaluation of the diametrical core deformation and discing analyses for in–situ stress estimation and application to the 4.9 km deep rock core from the Basel geothermal borehole, Switzerland[J]. Rock Mechanics and Rock Engineering, 54(12): 6511−6532. doi: 10.1007/s00603-021-02631-8
[31] Zoback M D, Barton C A, Brudy M, Castillo D A, Finkbeiner T, Grollimund B R, Moos D B, Peska P, Ward C D, Wiprut D J. 2003. Determination of stress orientation and magnitude in deep wells[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7): 1049−1076.
[32] Zou Caineng, Tao Shizhen, Yang Zhi, Yuan Xuanjun, Zhu Rukai, Hou Lianhua, Jia Jinhua, Wang Lan, Wu Songtao, Bai Bin, Gao Xiaohui, Yang Chun. 2012. New advance in unconventional petroleum exploration and research in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 31(4): 312–322 (in Chinese with English abstract).
[33] Zou Caineng, Yang Zhi, He Dongbo, Wei Yunsheng, Li Jian, Jia Ailin, Chen Jianjun, Zhao Qun, Li Yilong, Li Jun, Yang Shen. 2018. Theory, technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development, 45(4): 575−587 (in Chinese with English abstract).
[34] 蔡美峰. 1993. 地应力测量原理和方法的评述[J]. 岩石力学与工程学报, 12(3): 275−283.
[35] 陈念, 王成虎, 高桂云, 王璞. 2021. 基于应力多边形与钻孔崩落的白鹤滩右岸厂房区地应力场特征研究[J]. 岩土力学, 42(12): 3376−3384.
[36] 程远方, 沈海超, 赵益忠. 2008. 一种简化的差应变地应力测量技术[J]. 石油钻采工艺, 30(2): 61−64.
[37] 戴金星, 倪云燕, 吴小奇. 2012. 中国致密砂岩气及在勘探开发上的重要意义[J]. 石油勘探与开发, 39(3): 257−264.
[38] 付小敏, 王旭东. 2007. 利用岩石声发射测试地应力数据处理方法的研究[J]. 实验室研究与探索, (11): 296−299.
[39] 何建华, 曹峰, 邓虎成, 王园园, 李勇, 徐庆龙. 2023. 四川盆地HC地区须二段致密砂岩储层地应力评价及其在致密气开发中的应用[J]. 中国地质, 50(4): 1107−1121.
[40] 黄荣樽, 庄锦江. 1986. 一种新的地层破裂压力预测方法[J]. 石油钻采工艺, (3): 1−14.
[41] 贾承造, 郑民, 张永峰. 2012. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 39(2): 129−136.
[42] 姜永东, 鲜学福, 许江. 2005. 岩石声发射Kaiser效应应用于地应力测试的研究[J]. 岩土力学, 26(6): 946−950.
[43] 李国欣, 雷征东, 董伟宏, 王红岩, 郑兴范, 谭健. 2022. 中国石油非常规油气开发进展、挑战与展望[J]. 中国石油勘探, 27(1): 1−11.
[44] 刘亚群, 李海波, 景锋, 罗超文, 陈炳瑞, 李俊如, 周青春. 2007. 考虑应力梯度的原生裂隙水压致裂法地应力测量的原理及工程应用[J]. 岩石力学与工程学报, 26(6): 1145−1149.
[45] 邱振, 邹才能, 李建忠, 郭秋麟, 吴晓智, 侯连华. 2013. 非常规油气资源评价进展与未来展望[J]. 天然气地球科学, 24(2): 238−246.
[46] 沈海超, 程远方, 王京印, 赵益忠, 张建国. 2008. 主方向差应变地应力测量方法[J]. 新疆石油地质, (2): 250−252.
[47] 石林, 张旭东, 金衍, 陈勉. 2004. 深层地应力测量新方法[J]. 岩石力学与工程学报, (14): 2355−2358.
[48] 王成虎, 高桂云, 王洪, 王璞. 2020. 利用室内和现场水压致裂试验联合确定地应力与岩石抗拉强度[J]. 地质力学学报, 26(2): 167−174.
[49] 王璞, 王成虎, 杨汝华, 侯正阳, 王洪. 2019. 基于应力多边形与震源机制解的深部岩体应力状态预测方法初探[J]. 岩土力学, 40(11): 4486−4496.
[50] 王小琼, 葛洪魁, 宋丽莉, 和泰名, 辛维. 2011. 两类岩石声发射事件与Kaiser效应点识别方法的试验研究[J]. 岩石力学与工程学报, 30(3): 580−588.
[51] 尹帅, 丁文龙, 林利飞, 刘翰林, 李爱荣. 2023. 鄂尔多斯盆地西部志丹–吴起地区延长组裂缝特征及其控藏作用[J]. 地球科学, 48(7): 2614−2629.
[52] 尹帅, 孙晓光, 邬忠虎, 王应斌, 赵靖舟, 孙伟豪, 闫浩霖. 2022. 鄂尔多斯盆地东北缘上古生界构造演化及裂缝耦合控气作用[J]. 中南大学学报(自然科学版), 53(9): 3724−3737.
[53] 印兴耀, 马妮, 马正乾, 宗兆云. 2018. 地应力预测技术的研究现状与进展[J]. 石油物探, 57(4): 488−504.
[54] 张重远, 吴满路, 陈群策, 廖椿庭, 丰成君. 2012. 地应力测量方法综述[J]. 河南理工大学学报(自然科学版), 31(3): 305−310.
[55] 张金才, 范鑫, 黄志文, 刘忠群, 亓原昌. 2021. 四川盆地川西坳陷上三叠统须家河组储层各向异性地应力评价方法[J]. 石油与天然气地质, 42(4): 963−972.
[56] 张抗, 张立勤, 刘冬梅. 2022. 近年中国油气勘探开发形势及发展建议[J]. 石油学报, 43(1): 15−28,111.
[57] 赵刚, 董事尔. 2009. 水压致裂法测量地应力理论与应用[J]. 山西建筑, 35(36): 77−78. doi: 10.3969/j.issn.1009-6825.2009.36.048
[58] 郑和荣, 刘忠群, 徐士林, 刘振峰, 刘君龙, 黄志文, 黄彦庆, 石志良, 武清钊, 范凌霄, 高金慧. 2021. 四川盆地中国石化探区须家河组致密砂岩气勘探开发进展与攻关方向[J]. 石油与天然气地质, 42(4): 765−783.
[59] 周文. 2006. 川西致密储层现今地应力场特征及石油工程地质应用研究[D]: 成都: 成都理工大学, 1–142.
[60] 朱海燕, 宋宇家, 胥云, 李奎东, 唐煊赫. 2021. 页岩气储层四维地应力演化及加密井复杂裂缝扩展规律[J]. 石油学报, 42(9): 1224−1236.
[61] 邹才能, 陶士振, 杨智, 袁选俊, 朱如凯, 侯连华, 贾进华, 王岚, 吴松涛, 白斌, 高晓辉, 杨春. 2012. 中国非常规油气勘探与研究新进展[J]. 矿物岩石地球化学通报, 31(4): 312−322.
[62] 邹才能, 杨智, 何东博, 位云生, 李剑, 贾爱林, 陈建军, 赵群, 李易隆, 李君, 杨慎. 2018. 常规–非常规天然气理论、技术及前景[J]. 石油勘探与开发, 45(04): 575−587.
-