中国地质调查局 中国地质科学院主办
科学出版社出版

不同地质环境中锂的分布特征及生态、环境与生物健康效应

于扬, 王登红, 王伟, 高娟琴, 王成辉, 于沨, 刘善宝, 阚磊, 岑况, 秦燕. 2025. 不同地质环境中锂的分布特征及生态、环境与生物健康效应[J]. 中国地质, 52(2): 727-744. doi: 10.12029/gc20230316002
引用本文: 于扬, 王登红, 王伟, 高娟琴, 王成辉, 于沨, 刘善宝, 阚磊, 岑况, 秦燕. 2025. 不同地质环境中锂的分布特征及生态、环境与生物健康效应[J]. 中国地质, 52(2): 727-744. doi: 10.12029/gc20230316002
YU Yang, WANG Denghong, WANG Wei, GAO Juanqin, WANG Chenghui, YU Feng, LIU Shanbao, KAN Lei, CEN Kuang, QIN Yan. 2025. Distribution characteristics and ecological, environmental and biological health effects of lithium in different geological environments[J]. Geology in China, 52(2): 727-744. doi: 10.12029/gc20230316002
Citation: YU Yang, WANG Denghong, WANG Wei, GAO Juanqin, WANG Chenghui, YU Feng, LIU Shanbao, KAN Lei, CEN Kuang, QIN Yan. 2025. Distribution characteristics and ecological, environmental and biological health effects of lithium in different geological environments[J]. Geology in China, 52(2): 727-744. doi: 10.12029/gc20230316002

不同地质环境中锂的分布特征及生态、环境与生物健康效应

  • 基金项目: 国家重点研发计划(2021YFC2901905,2021YFC2901900)、中国地质调查局项目(DD20230034、DD20230290、DD20190173)联合资助。
详细信息
    作者简介: 于扬,女,1982年生,博士,研究员,主要从事地球化学研究;E-mail:yuyang_cags@sina.com
    通讯作者: 王登红,男,1967年生,研究员,主要从事矿床学研究工作;E-mail:wangdenghong@vip.sina.com
  • 中图分类号: X503; P618.71

Distribution characteristics and ecological, environmental and biological health effects of lithium in different geological environments

  • Fund Project: Supported by Key Research and Development Plan (No.2021YFC2901905, No.2021YFC2901900), the projects of China Geological Survey (No.DD20230034, No.DD20230290, No.DD20190173).
More Information
    Author Bio: YU Yang, female, born in 1982, Ph.D., researcher, mainly engaged in the study of geochemistry; E-mail: yuyang_cags@sina.com .
    Corresponding author: WANG Denghong, male, born in 1967, professor, mainly engaged in the study of mineral deposits; E-mail: wangdenghong@vip.sina.com.
  • 研究目的

    人与自然和谐共生的新格局影响着地质生态有机系统研究理念,了解和掌握不同地质环境中锂的分布特征有助于提升锂资源的利用效率,促进发展方式绿色转型。

    研究方法

    围绕地质工作需求,从整体着眼,通过大量调研、野外采样和理化特性测试分析,运用多学科交叉研究方法,最大程度地反映锂在不同地质环境中的分布特征及生态、环境与生物健康效应。

    研究结果

    ①阐明了锂在水圈(海洋底部、地下水、河流、湖泊、冰川融水、雪水、雨水)、岩石圈(大陆地壳、岩石、土壤)、大气圈和生物圈中的区域性及多场耦合作用的分布特征,分析了锂在不同地质环境区的时空分布特征和区域性差异。②初步总结了各圈层锂元素庞大而复杂的生物、地质和地球化学过程及时空分布格局的影响因素。③充实完善了锂在陆地生物圈关键层中的分布特征,完善了大型锂资源基地综合评价指标体系,建立了系统化、定量化评价模型,评估了人为活动(采矿)影响下地表水、地下水、土壤、优势生物个体(植物、动物骨骼)锂含量的变化特征,揭示了锂的“关键层”和独特的生态、环境效应,梳理了锂缺乏与过剩的生物健康效应,为关键性矿产资源开发、生态文明建设、保障大型资源基地环境安全提供了科学支撑。

    结论

    不同地质环境中锂的分布特征及生态、环境效应研究表明,伟晶岩型锂资源开发对生态环境的影响整体安全可控,黏土型、卤水型锂资源清洁、高效的开发利用目前仍有一些关键问题亟待解决。随着锂成因机制理论难题的深入研究、交叉学科应用基础研究以及模拟技术的应用,将使锂元素的迁移转化机制研究取得突破性进展。生理量的锂对健康有益,但生物体内锂过剩会引起一定的副作用甚至毒性反应。因此,有必要持续开展不同类型锂资源的生态环境与生物健康效应的系统研究,为我国关键性矿产资源的安全合理开发及生态文明建设提供理论依据。

  • 加载中
  • 表 1  锂在不同介质中的含量

    Table 1.  Concentration of Lithium in different media

    介质 Li元素
    平均浓度
    资料来源 介质 Li元素
    平均浓度
    资料来源
    地壳 25×10−6 刘英俊,1984 Lena勒拿河 1.33×10−9 Gaillardet et al., 2014
    陆壳 32×10−6 长江 3.44×10−9
    洋壳 7×10−6 Ganges恒河 3.47×10−9
    超基性侵入岩 2×10−6 布拉马普特拉河 2.61×10−9
    基性侵入岩 15×10−6~18×10−6 世界河流平均值 1.84×10−9
    中性侵入岩 28×10−6 密西西比河 10.00×10−9
    酸性侵入岩 30×10−6~55×10−6 漳卫新河(中国) 0.05×10−9 蔡文静等,2013
    沉积岩 31.45×10−6 马颊河(中国) 0.03×10−9
    火山岩 22.92×10−6 德惠新河(中国) 0.03×10−9
    花岗伟晶岩 2700×10−6~6900×10−6 徒骇河(中国) 0.03×10−9
    土壤 31×10−6 川西河流平均值 4.02×10−9 高娟琴等,2019
    黑色土、森林土、灰化土 56×10−6~100×10−6 泰晤士河 11.20×10−9 Neal et al., 2000
    蛇纹岩分解土壤 30×10−6 尼泊尔Indrawati河流 1.53×10−9 Sharma et al., 2015
    橄榄辉长岩分解土壤 30×10−6 Lena勒拿河 2.13×10−9 Yoon,2010
    安山岩分解土壤 50×10−6 安宁河(中国) 0.5×10−9 本文
    花岗岩分解土壤 7×10−6 白河(中国) 0.98×10−9
    花岗片麻岩分解土壤 70×10−6 大渡河(中国) 4.75×10−9
    石英云母片岩分解土壤 200×10−6 都江堰(中国) 5.72×10−9
    页岩分解土壤 60×10−6 额尔齐斯河(中国) 4.68×10−9
    砂岩分解土壤 20×10−6 涪江(中国) 2.6×10−9
    石英岩分解土壤 15×10−6 赣江(中国) 12.75×10−9
    泥炭、潜育土、灰化土上部 20×10−6~80×10−6 贡水(中国) 17.34×10−9
    泥炭、潜育土、灰化土下部 150×10−6~200×10−6 嘉陵江(中国) 1.76×10−9
    碳质球粒陨石 1.7×10−6 Seitz et al., 2007 金沙江(中国) 47.02×10−9
    普通球粒陨石 1.8×10−6 九龙河(中国) 6.45×10−9
    甲基卡矿田土壤 3.42×10−6 高娟琴等,2019 喀依特河(中国) 4.34×10−9
    风成尘土 17×10−6~41×10−6 Teng et al., 2004;
    Liu et al., 2013
    桑干河(中国) 42.4×10−9
    热泉水 (8.2 ± 0.4)×10−6 刘英俊,1984 踏卡河(中国) 3.04×10−9
    啦井温泉(中国) 605×10−9 郑亚新等,1988
    桃江(中国) 4.28×10−9
    新和温泉(中国) 351×10−9 乌伦古河(中国) 14.99×10−9
    马登温泉(中国) 246×10−9 寻乌水(中国) 3.77×10−9
    武山温泉(中国) 361×10−9 周小龙,2010 雅砻江(中国) 6.79×10−9
    明香温泉(中国) 1260×10−9 肖尧等,2016 漳水(中国) 12.06×10−9
    金汤湾海水温泉(中国) 1760×10−9 叶实现等,2009 子耳乡河(中国) 8.62×10−9
    塘子庙温泉(中国) 671×10−9 申晓伟等,2017 贝加尔湖 2.04×10−9 Gaillardet et al., 2014
    杨树沟地热井(中国) 205×10−9 五大连池(中国) 0.01×10−9 贺军等,2012
    砬子底下地热井(中国) 274×10−9 湖水 0.085×10−6~0.095×10−6 刘英俊,1984
    塘泉沟温泉(中国) 44.4×10−9 蒸发湖 1.2×10−6~8.5×10−6
    洪塘寺温泉(中国) 181×10−9 张雪等,2010 人体饮食需要量 60~100 μg/d 秦俊法,2000
    从化温泉(中国) 59×10−9 周海燕等,2008 人体正常摄入 200~600 μg/d
    日多温泉(中国) 2240×10−9 王祝等,2015 饮用水 50×10−9~70×10−9
    茶洛地下水(中国) 4.55×10−9 于沨等,2022 有治疗效果 170~280 mg/d Groleau et al., 1987
    北山花岗岩地下水(中国) 11.2×10−9 康明亮等,2010 环境接触 < 2 mg/L 杨师,2000
    海水 0.194×10−6 刘英俊,1984 牧草 0.05×10−6~0.15×10−6 刘英俊,1984
    河水 (0.023 ± 0.011)×10−6 毛榉树皮及叶子 60×10−6~74×10−6 刘英俊,1984
    Selenga塞伦加河(俄罗斯) 3.4×10−9 Gaillardet et al., 2014 谷类、豌豆、菜豆 秦俊法,2000
    Upper Angara上安加拉河 1.09×10−9 蛋类、奶类 含量丰富
    Barguzin巴尔古津河 1.77×10−9 肉类、鱼类、土豆、蔬菜 含量平均
    Mackenzie马更些河(加拿大) 4.6×10−9 饮料 较高
    Indin River(加拿大) 0.91×10−9 叶菜类、根菜类、水果 较高 杨师,2000
    Upper Yukon育空河(加拿大) 0.64×10−9 甲基卡锂矿植物根系 4.24×10−6 高娟琴等,2019
    Skeena斯基纳河(加拿大) 0.35×10−9 Gaillardet et al., 2014 甲基卡锂矿植物茎叶 3.42×10−6 高娟琴等,2019
    Fraser River弗雷泽河(加拿大) 1.05×10−9 野菊花 (18.35±0.86)×10−6 李增禧等,2013
    a, b, c, d
    Columbia River哥伦比亚河 1.46×10−9 金银花 (12.01±2.61)×10−6
    Amazon 亚马逊河 0.91×10−9 连翘 (24.6±3.25)×10−6
    Solimoes索利默伊斯河 1.02×10−9 羌活 4.00×10−6
    Madeira马代拉河 1.18×10−9 邹花细辛 3.60×10−6
    Trompetas特龙佩塔斯河 0.41×10−9 防风 2.75×10−6
    Orinoco奥里诺科河 0.32×10−9 茶叶 0.08×10−6~0.45×10−6
    Caroni卡罗尼河 0.16×10−9 全球平均植物 0.2×10−6 Pickett et al., 1992
    下载: 导出CSV

    表 2  岩脉本身污染性元素综合污染指数评价结果

    Table 2.  Evaluation result of integration pollution index of polluting element in dike

    Cr/10−6Cd/10−6Pb/10−6As/10−6
    平均值18.653.3432.226.09
    管制值10003700120
    单污染指数0.021.110.050.05
    综合污染指数
    及污染水平
    0.82 清洁
    下载: 导出CSV
  • [1]

    Ayeshamu Shahur, Jia Hongtao, Minawal Nur Aihemaiti, Bai Dengsha Maimaiti Aili. 2010. Research on content distribution and changing characteristics of lithium and rubidium in the meadow saline soil during improvement process[J]. Xinjiang Agricultural Sciences, 47(4): 765−769 (in Chinese with English abstract).

    [2]

    Beddows D C S, Donovan R J, Harrison R M, Heal M R, Kinnersley R P, King M D, Nicholson D H, Thompson K C. 2004. Correlations in the chemical composition of rural background atmospheric aerosol in the UK determined in real time using time–of–flight mass spectrometry[J]. Journal of Environmental Monitoring, 6(2): 124−133. doi: 10.1039/b311209h

    [3]

    Blood Group of Beijing Tongren Hospital. 1982. The effect of lithium carbonate on hematopoietic tissue[J]. Medical Research Communication, (12): 18−19, 4 (in Chinese).

    [4]

    Bruland K W, Middag R, Lohan M C. 2014. Controls of Trace Metals in Seawater[C]//Treatise on Geochemistry. Elsevier, 19–51.

    [5]

    Bryce–Smith D. 1992. Lithium in Biology and Medicine[M]. Wiley–VCH, Weinheim, 307–308.

    [6]

    Cai Wenjing, Chang Chunping, Song Shuai, Li Jing, Zhang Fang, Li Fadong. 2013. Spatial distribution and sources of dissolved trace metals in surface water of Dezhou irrigation district[J]. Acta Scientiae Circumstantiae, 33(3): 754−761 (in Chinese with English abstract).

    [7]

    Chen Qingyun, Xian Su, Huang Ruiheng, Qin Yingfen, Wei Mei'e, He Yuzhong. 1995. Zinc, selenium, lithium, vanadium and germanium concentrations change in hairs in patients with hyperthyroidism[J]. Guangdong Trace Elements Science, (6): 34−37 (in Chinese with English abstract).

    [8]

    Chen Xiaojing, Qi Jianhua, Liu Ning, Zhang Xiangyu, Shen Hengqing, Liu Mingxu. 2014. Concentration distribution of metal elements in atmospheric aerosol under different weather conditions in Qingdao coastal region[J]. Environmental Science, 35(10): 3651−3662 (in Chinese with English abstract).

    [9]

    Chen Youhe, Young W. 2008. The effects of lithium on the central nervous and blood systems (1)[J]. Chinese Prescription Drugs, (6): 57−59 (in Chinese).

    [10]

    Dawson E T. 1991. The relationship of tap water and physiological levels of lithium to mental hospital admission and homicide in Texas[J]. Lithium in Biology and Medicine, (1991): 171−187.

    [11]

    Deng Shirong. 2000. Trace element li and health of human body[J]. Guangdong Trace Elements Science, (11): 12−14 (in Chinese with English abstract).

    [12]

    Deocampo D M, Jones B F. 2014. Geochemistry of Saline Lakes[C]//Treatise on Geochemistry. Elsevier, 437–469.

    [13]

    Du Chenchang, Liu Enfeng, Yang Xiangdong, Wu Yanhong, Xue Bin. 2012. Characteristics of enrichment and evaluation of anthropogenic pollution of heavy metals in the sediments of Lake Chaohu[J]. Journal of Lake Sciences, 24(1): 59−66 (in Chinese with English abstract). doi: 10.18307/2012.0108

    [14]

    Gaillardet J, Viers J, Dupré B. 2014. Trace Elements in River Waters[C]//Treatise on Geochemistry. Elsevier, 195–235.

    [15]

    Gao Juanqin, Yu Yang, Wang Denghong, Liu Lijun, Dai Hongzhang, Guo Weiming. 2019. Distribution characteristics and implication of rare metal elements in surface water of the Jiajika mine in western Sichuan[J]. Acta Geologica Sinica, 93(6): 1331−1341 (in Chinese with English abstract).

    [16]

    Groleau G, Barish R, Tso E, Whye D, Browne B. 1987. Lithium intoxication: Manifestations and management[J]. The American Journal of Emergency Medicine, 5(6): 527−532.

    [17]

    Han Jilong. 2018. Hydrochemical of Brines and Their Geological Significances from Southern Qinghai, China [D]. Xining: University of Chinese Academy of Sciences (Chinese Academy of Sciences Qinghai Salt Lake Research Institute), 1–135(in Chinese with English abstract).

    [18]

    He Jun, Zhou Liting, Li Na, Liu Te, Zheng Dongchun, Qu Xiaofeng, Huang Jian, Ye Lin. 2012. Determination of 18 trace elements in natural mineral water of Changbai Mountain by ICP–MS[J]. Journal of Jilin University (Medicine Edition), 38(6): 1223−1226 (in Chinese with English abstract).

    [19]

    Hu Wenliang. 2006a. The health effects of trace element lithium (a)[J]. Guangdong Trace Elements Science, (6): 36(in Chinese).

    [20]

    Hu Wenliang. 2006b. The health effects of trace element lithium (b)[J]. Guangdong Trace Elements Science, (6): 43(in Chinese).

    [21]

    Huang Runqian. 1999. The effects of tide and rotation on the mass exchange process of binary stars [J]. Research in Astronomy and Astrophysics (2): 171–177(in Chinese with English abstract).

    [22]

    Jean P J, Marie L C, Gérard M, Jacques E. B. 1980. Lidar measurements of atmospheric lithium[J]. Geophysical Research Letters, 7(11): 995−998.

    [23]

    Ji Yutong, Cao Shengkui, Cao Guangchao, Li Huafei. 2021. Hydrochemical characteristics of river water and groundwater in the Shaliu river basin of Qinghai Lake in Summer[J]. Journal of Qinghai Normal University(Natural Science), 37(2): 63−75 (in Chinese with English abstract).

    [24]

    Jiang Chao, Yan Wenming, He Xiangyu, Wang Xiaolin, Song Yongfeng, Wu Bin, Tian Fen, Liu Tianyang. 2023. Distribution characteristics and source analysis of trace elements in plateau rivers under variable hydrological conditions[J]. Water Resources and Power, 41(1): 55−58, 5 (in Chinese with English abstract).

    [25]

    Kang Mingliang, Chen Fanrong, Wu Shijun, Zhang Rong, Yang Yongqiang, Wang Li'an. 2010. Se species and concentration–controlling study in Beishan mountain granite ground water[J]. Radiation Protection, 30(6): 327−334 (in Chinese with English abstract).

    [26]

    Li Lei, Gao Jing, Li Haichang, Lin Ye, Zhou Yibing, Liu Liya. 2016. Determination of 22 elements in atmospheric PM2.5 by inductively coupled plasma mass spectrometry[J]. Journal of Environmental and Occupational Medicine, 33(6): 620−623 (in Chinese with English abstract).

    [27]

    Li Zengxi, Pan Weijian, Tan Yongji, Lao Zhihua, Huang Liyi, Xiao Yongbing. 2013a. TCM trace element data (1)[J]. Guangdong Trace Elements Science, 20(2): 55−70 (in Chinese with English abstract).

    [28]

    Li Zengxi, Pan Weijian, Tan Yongji, Lao Zhihua, Huang Liyi, Xiao Yongbing. 2013b. TCM trace element data (2)[J]. Guangdong Trace Elements Science, 20(3): 42−70 (in Chinese with English abstract).

    [29]

    Li Zengxi, Pan Weijian, Tan Yongji, Lao Zhihua, Huang Liyi, Xiao Yongbing. 2013c. TCM Trace Element Data (3)[J]. Guangdong Trace Elements Science, 20(4): 55−62 (in Chinese with English abstract).

    [30]

    Li Zengxi, Pan Weijian, Tan Yongji, Lao Zhihua, Huang Liyi, Xiao Yongbing. 2013d. TCM trace element data (4)[J]. Guangdong Trace Elements Science, 20(5): 35−62 (in Chinese with English abstract).

    [31]

    Lin Bixia, Xi Su, Xia Ning, Liu Hong, Huang Ruiheng, Zhang Guifu, He Yuzhong, Lin Wenye, Luo Jianhui, Huang Lijuan. 1991. Preliminary exploration of the relationship between serum and hair copper, zinc, selenium, chromium, vanadium, lithium, strontium, germanium, and hyperthyroidism[J]. Guangxi Medical Journal, (1): 4−9 (in Chinese).

    [32]

    Lin Lin, Wang Yilin. 2019. Comprehensive study on Tianchi water resources in Changbai Mountain[J]. Jilin Geology, 38(1): 60−66, 101 (in Chinese with English abstract).

    [33]

    Liu X M, Rudnick R L, McDonough W F, Cummings M L. 2013. Influence of chemical weathering on the composition of the continental crust: Insights from Li and Nd isotopes in bauxite profiles developed on Columbia River Basalts[J]. Geochimica et Cosmochimica Acta, 115: 73−91. doi: 10.1016/j.gca.2013.03.043

    [34]

    Liu Yingjun, Cao Liming, Li Zhaoling, Wang Henian, Chu Tongqing, Zhang Jingrong. 1984. Element Geochemistry[M]. Beijing: Science Press, 1−281 (in Chinese).

    [35]

    Lu Min, Zhang Weiguo, Shi Yuxin, Yu Lizhong, Zheng Xiangmin. 2003. Vertical variations of metals and nutrients in sediments from northern Taihu Lake and the Influencing factors[J]. Journal of Lake Sciences, (3): 213−220 (in Chinese with English abstract).

    [36]

    Manaka T, Araoka D, Yoshimura T, Hossain H M Z, Nishio Y, Suzuki A, Kawahata H. 2017. Downstream and seasonal changes of lithium isotope ratios in the Ganges–brahmaputra river system[J]. Geochemistry, Geophysics, Geosystems, 18(8): 3003–3015.

    [37]

    Neal C, Robson A J. 2000. A summary of river water quality data collected within the Land–Ocean Interaction Study: Core data for eastern UK rivers draining to the North Sea[J]. Science of the total environment, 251: 585−665.

    [38]

    Nielsen F H. 1998. Ultratrace elements in nutrition: Current knowledge and speculation[J]. The Journal of Trace Elements in Experimental Medicine: The Official Publication of the International Society for Trace Element Research in Humans, 11(2−3): 251−274.

    [39]

    Pickett E E, O’Dell B L. 1992. Evidence for dietary essentiality of lithium in the rat[J]. Biological Trace Element Research, 34: 299−319. doi: 10.1007/BF02783685

    [40]

    Qin Junfa. 2000. Biological essentiality of lithium and its health effects in humans[J]. Guangdong Trace Elements Science, (3): 1−16 (in Chinese with English abstract).

    [41]

    Rossetti L, Giaccari A, Klein–Robbenhaar E, Vogel L R. 1990. Insulinomimetic properties of trace elements and characterization of their in vivo mode of action[J]. Diabetes, 39(10): 1243−1250. doi: 10.2337/diab.39.10.1243

    [42]

    Schlesinger W H, Klein E M, Wang Z, Vengosh A. 2021. Global biogeochemical cycle of lithium[J]. Global Biogeochemical Cycles, 35(8): e2021GB006999. doi: 10.1029/2021GB006999

    [43]

    Schrauzer G N, Shrestha K P. 1990. Lithium in drinking water and the incidences of crimes, suicides, and arrests related to drug addictions[J]. Biological trace element research, 25: 105−113. doi: 10.1007/BF02990271

    [44]

    Schrauzer G N, Shrestha K P, Flores–Arce M F. 1992. Lithium in scalp hair of adults, students, and violent criminals[J]. Biological Trace Element Research, 34(2): 161−176. doi: 10.1007/BF02785244

    [45]

    Schrauzer G N, de Vroey E. 1994. Effects of nutritional lithium supplementation on mood: A placebo–controlled study with former drug users[J]. Biological trace element research, 40: 89−101. doi: 10.1007/BF02916824

    [46]

    Seitz H M, Brey G P, Zipfel J, Ott U, Weyer S, Durali S, Weinbruch S. 2007. Lithium isotope composition of ordinary and carbonaceous chondrites, and differentiated planetary bodies: Bulk solar system and solar reservoirs[J]. Earth and Planetary Science Letters, 260(3): 582−596.

    [47]

    Sharma C M, Kang S, Sillanpää M, Li Q, Zhang Q, Huang J, Tripathee L, Sharma S, Paudyal R. 2015. Mercury and selected trace elements from a remote (Gosainkunda) and anurban (Phewa) lake waters of Nepal[J]. Water, Air & Soil Pollution, 226: 1–10.

    [48]

    Shen Xiaowei. 2017. Characteristics of Some Hot Springs in Northern Hebei and Beijing [D]. Beijing: China University of Geosciences (Beijing), 1–72(in Chinese with English abstract).

    [49]

    Stoffynegli P, Mackenzie F T. 1984. Mass balance of dissolved lithium in the oceans[J]. Geochimica et Cosmochimica Acta, 48(4): 859−872. doi: 10.1016/0016-7037(84)90107-8

    [50]

    Su Hui, Zhu Zhaowu, Wang Lina, Qi Tao. 2019. Advances and prospects of extracting and recovering lithium from salt lake brines[J]. Materials Reports, 33(13): 2119−2126 (in Chinese with English abstract).

    [51]

    Teng F Z, McDonough W F, Rudnick R L, Dalpé C, Tomascak P B, Chappell B W, Gao S. 2004. Lithium isotopic composition and concentration of the upper continental crust[J]. Geochimica et Cosmochimica Acta, 68(20): 4167−4178. doi: 10.1016/j.gca.2004.03.031

    [52]

    Wallerstein G, Sneden C. 1982. AK giant with an unusually high abundance of lithium–HD 112127[J]. The Astrophysical Journal, 255: 577−584. doi: 10.1086/159859

    [53]

    Wang Denghong, Wang Ruijiang, Li Jiankang, Zhao Zhi, Yu Yang, Dai Jingjing, Chen Zhenghui, Li Dexian, Qu Wenjun, Deng Maochun, Fu Xiaofang, Sun Yan, Zheng Guodong. 2013. The progress in the strategic research and survey of rare earth, rare metal and rare–scattered elements mineral resources[J]. Geology in China, 40(2): 361−370 (in Chinese with English abstract).

    [54]

    Wang Denghong, Liu Lijun, Liu Xinxing, Zhao Zhi, He Hanhan. 2016. Main types and research trends of energy metallic resources in China[J]. Journal of Guilin University of Technology, 36(1): 21−28 (in Chinese with English abstract).

    [55]

    Wang Denghong, Liu Lijun, Hou Jianglong, Dai Hongzhang, Yu Yang, Dai Jingjing, Tian Shihong. 2017. A preliminary review of the application of “five levels+basement”model for Jiajika style rare metal deosits.[J]. Earth Science Frontiers, 24(5): 1−7 (in Chinese with English abstract).

    [56]

    Wang Denghong, Liu Shanbao, Yu Yang, Wang Chenghui, Sun Yan, Dai Hongzhang, Li Jiankang, Dai Jingjing, Wang Yuxian, Zhao Ting, Ma Shengchao, Liu Lijun. 2019. Exploration progress and development suggestion for the large–scale mining base of strategic critical mineral reources in western Sichuan[J]. Acta Geologica Sinica, 93(6): 1444−1453 (in Chinese with English abstract).

    [57]

    Wang Denghong. 2020. Exploring the development path of China's three rare minerals in the era of global strategic emerging resources[J]. Scientific and Cultural Popularization of Natural Resources, (1): 4−11 (in Chinese).

    [58]

    Wang Denghong, Zhao Zhi, Yu Yang, Dai Jingjing, Deng Maochun, Zhao Ting, Liu Lijun. 2020. Research and exploration progress on lithium deposits in China[J]. China Geology, 3(1): 137−152.

    [59]

    Wang Lijun, Zhang Chaosheng, Zhang Shen, Chen Nengjian, Yang Liu. 1998. Geochemical characteristics of rare earth elements in the Zhujiang river in Guangzhou[J]. Acta Geographica Sinica, (5): 71−80 (in Chinese with English abstract).

    [60]

    Wang Lixiong, Yang Tongzai, Jiang Tao. 2006. Separation and stable isotopic measurement of lithium in atmosphere aerosol sample[J]. Chinese Journal of Analytical Chemistry, (S1): 105−108 (in Chinese with English abstract).

    [61]

    Wang Jinyi. 1993. Primary application of plant spectral characteristics and its trace–element analysis for remote sensing interpretation of oil and gas [J]. Remote Sensing for Natural Resources, (4): 34–37, 7–66 (in Chinese with English abstract).

    [62]

    Wang Qilian, Liu Congqiang, Zhao Zhiqi, Chetelat B, Ding Hu. 2008. Lithium isotopic composition of the dissolved and suspended loads of the Yangtze River, China[J]. Advances in Earth Science, (9): 952−958 (in Chinese with English abstract).

    [63]

    Wang Q L, Chetelat B, Zhao Z Q, Ding H, Li S L, Wang B L, Li J, Liu X L. 2015. Behavior of lithium isotopes in the Changjiang River system: Sources effects and response to weathering and erosion[J]. Geochimica et Cosmochimica Acta, 151: 117−132. doi: 10.1016/j.gca.2014.12.015

    [64]

    Wang Shifang, Li Zaijun. 2010. Ionic liquid as solvent for preconcentration of trace lithium in hair and its determination by flame atomic absorption spectrometry[J]. Journal of Clothing Research, 9(6): 695−700 (in Chinese with English abstract).

    [65]

    Wang Xueqiu, Liu Hanliang, Wang Wei, Zhou Jian, Zhang Bimin, Xu Shanfa. 2020. Geochemical abundance and spatial distribution of lithium in China: Implications for potential prospects[J]. Acta Geoscientica Sinica, 41(6): 797−806 (in Chinese with English abstract).

    [66]

    Wang Zhu, Li Mingli, Shao Bei, Zhuoma Quxi, Jiang Zhenzhen, Liu Gaoling, Duoji. 2015. Determination of 11 major and minor elements in geothermal water of Riduo hotspring in Tibet by inductively coupled plasma atomic emission spectrometry[J]. Rock and Mineral Analysis, 34(3): 302−307 (in Chinese with English abstract).

    [67]

    Wang Zhuo, Huang Ranxiao, Wu Datian, Xu Fengming, Sun Wei, Zhang Dehui, Zhao Yuandong. 2023. The basic characteristics and development potential evaluation of salt lake brine-type lithium deposits[J]. Geology in China, 50(1): 102−117 (in Chinese with English abstract).

    [68]

    Wu B, Zhao D Y, Jia H Y, Zhang Y, Zhang X X, Cheng S P. 2009. Preliminary risk assessment of trace metal pollution in surface water from Yangtze River in Nanjing section, China[J]. Bulletin of Environmental Contamination and Toxicology, 82(4): 405−409. doi: 10.1007/s00128-008-9497-3

    [69]

    Wu Fengchang, Meng Wei, Song Yonghui, Liu Zhengtao, Jin Xiangcan, Zheng Binghui, Wang Yeyao, Wang Shengrui, Jiang Xia, Lu Shaoyong, Chu Zhaosheng, Chen Yanqing, Wang Chao, Hua Zulin, Wang Peifang, Yu Zhiqiang, Fu Jiamo. 2008. Research progress in lake water quality criteria in China[J]. Acta Scientiae Circumstantiae, (12): 2385−2393 (in Chinese with English abstract).

    [70]

    Wu Jiong, Wu Qixin, An Yanling, Gao Shilin, Ke Xinhui, Zhou Jinxiong, Qin Li. 2023. Influence of urbanization on trace elements in natural rivers—A case study of Chishui river basin[J]. Earth and Environment, 51(1): 56−66 (in Chinese with English abstract).

    [71]

    Xi Xiaohuan, Li Min. 2013. Reviews of the development of the exploration geochemistry during the Eleventh Five–Year Period[J]. Earth Science Frontiers, 20(3): 161–169 (in Chinese with English abstract).

    [72]

    Xiao Yao, Li Xiao. 2016. Analysis of hydro−chemical features, genetic and value of Mingxiang hotspring[J]. Pearl River, 37(3): 90−94 (in Chinese with English abstract).

    [73]

    Xiao Yingkai, Qi Haiping, Wang Yunhui, Jin Lin. 1994. Lithium isotope composition of brine, sediments and source water in Da Qaidam lake, Qinghai, China[J]. Geochimica, (4): 329, 338 (in Chinese with English abstract).

    [74]

    Xiong Darun. 1992. The cosmological and stellar lithium abundance problem[J]. Progress in Astronomy, (2): 91−102 (in Chinese with English abstract).

    [75]

    Xu Zhaoxi. 1987. A new method for recovering lithium from spodumene[J]. Inorganic Chemicals Industry, (3): 48(in Chinese).

    [76]

    Yan Hongliang, Shi Jianrong. 2018. The mystery of the birth of lithium in the extremely lithium rich giant star, which is known to have the highest abundance of lithium, has been discovered[J]. Physics, 47(12): 788−791 (in Chinese).

    [77]

    Yang Yunong. 1986. Lithium resources, production and application abroad[J]. Hunan Nonferrous Metals, (6): 36−39, 18 (in Chinese).

    [78]

    Yang Shi. 2000. Lithium and human health[J]. Hunan Nonferrous Metals, (4): 10(in Chinese).

    [79]

    Ye Shixian, Chen Ji, Lin Min. 2009. A Study on the medical and health effects of Jintang Bay seawater hot springs [J] Straits Science, (7): 59–63(in Chinese).

    [80]

    Yoon J. 2010. Lithium as a silicate weathering proxy: Problems and perspectives[J]. Aquatic geochemistry, 16: 189−206. doi: 10.1007/s10498-009-9078-z

    [81]

    Yu Feng, Wang Denghong, Yu Yang, Liu Lijun, Dai Hongzhang. 2019. Ecological risk assessment of heavy metals in the soil of the Jiajika lithium deposit[J]. Environmental Science & Technology, 42(S1): 232−240 (in Chinese with English abstract).

    [82]

    Yu Feng, Wang Wei, Yu Yang, Wang Denghong, Liu Shanbao, Gao Juanqin, Lü Bingting, Liu Lijun. 2021. Distribution characteristics and ecological risk assessment of heavy metals in soils from Jiulong Li−Be mining area, western Sichuan Province, China[J]. Rock and Mineral Analysis, 40(3): 408−424 (in Chinese with English abstract).

    [83]

    Yu Feng, Yu Yang, Wang Denghong, Gao Juanqin, Wang Chenghui, Guo Weiming. 2022. Application of Li isotope in geothermal fluid–rock interaction: A case study of modern Li–rich geothermal water in western Sichuan[J]. Acta Petrologica Sinica, 38(2): 472−482 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.02.11

    [84]

    Yu Yang, Wang Denghong, Yu Feng, Wang Wei, Liu Lijun, Gao Juanqin, Hao Xuefeng. 2019. Study on the index system of green investigation and environmental evaluation for the Jiajika large lithium mineral resource base, western Sichuan, China[J]. Rock and Mineral Analysis, 38(5): 534−544 (in Chinese with English abstract).

    [85]

    Yu Yang, Wang Wei, Wang Denghong, Gao Juanqin, Liu Shanbao, Yuan Linping, Yu Feng, Zhang Sai. 2021. Hydrochemical prospecting method and its application in Green Investigation of large resource bases: A case study of surface hydrochemical prospecting in the Jiulong area of western Sichuan[J]. Rock and Mineral Analysis, 40(2): 227−238 (in Chinese with English abstract).

    [86]

    Yu Yongwei, Huang Yanyun, Wu Ming, Yao Daoguang, He Yuzhong, Lin Wenye, Luo Jianhui, Huang Lijuan, Lin Kui. 1995. The content variation of Co, Li in the hair, serum and bone marrom of aplastic anemia[J]. Guangdong Trace Elements Science, (6): 41−44 (in Chinese with English abstract).

    [87]

    Zeng Zhaohua, Zeng Xueping. 1995. The formation of lithium in groundwater and its relationship with human health[J]. Jiangxi Geological Science and Technology, (4): 189−190 (in Chinese).

    [88]

    Zhan Jingming, Ma Yuefeng, Gu Xiaona, Liu Zhanqi. 2008. Research progress on the health damage effects of lithium and its compounds[J]. Journal of Environmental Hygiene, (6): 374−377 (in Chinese).

    [89]

    Zhang B, Qi F Y, Gao X Z, Li X L, Shang Y T, Kong Z Y, Jia L Q, Meng J, Guo H, Fang F K, Liu Y B, Jiang X, Chai H, Liu Z, Ye X T, Wang G D. 2022. Geological characteristics, metallogenic regularity, and research progress of lithium deposits in China[J]. China Geology, 5(4): 734−767.

    [90]

    Zhang Fei, Jin Zhangdong. 2022. Decryption: Changes in Li Isotopes in hydrological dominant rivers and seawater[J]. Journal of Earth Environment, 13(3): 354−356 (in Chinese).

    [91]

    Zhang Hongfeng, Zhou Hongwei, Cheng Yanfang, Xie Jin, Pan Xinhong, Peng Rongfei. 2017. Determination of 26 elements in atmospheric fine particulate matter by ultrasound assisted extraction and inductively coupled plasma–mass spectrometry[J]. Chinese Journal of Health Laboratory Technology, 27(7): 926−930 (in Chinese with English abstract).

    [92]

    Zhang Xiaoyu. 2021. Complexes of Li/Na/K in Geo–fluids: A Molecular Dynamics Study[D]. Nanjing: Nanjing University, 1–90(in Chinese with English abstract).

    [93]

    Zhang Xue, Zhou Xun, Li Zai Guang, Wang Ying, Xu Tingwu, Guo Xiaojuan. 2010. Hydrochemical and isotopic characteristics of the Hongtangsi hot spring in fengning county of Hebei Province[J]. Hydrogeology & Engineering Geology, 37(5): 123−127 (in Chinese with English abstract).

    [94]

    Zheng Yaxin, Zhang Mingtao, Zhu Bingqiu, Zhu Lixin. 1988. Alkaline metal elements of the Rehai geothermal field in Yunnan Province[J]. Journal of Natural Resources, (1): 16−27 (in Chinese with English abstract).

    [95]

    Zhou Haiyan, Zhou Xun, Liu Chunhui, Yu Lan, Li Juan, Liang Yongguo. 2008. Hydro–chemical and isotopic characteristics of Conghua hot mineral springs in Guangdong[J]. Journal of Natural Resources, (4): 705−712 (in Chinese with English abstract).

    [96]

    Zhou Xiaolong. 2010. Geothermal resources of Wenquan in Wushan county and exploitation prospect[J]. Gansu Geology, 19(3): 55−59 (in Chinese with English abstract).

    [97]

    Zhu Li. 2021. Study on Mineralogical Characteristics and Green Leaching Technology of Clay–type Lithium Resources [D]. Guiyang: Guizhou Normal University, 1–75(in Chinese with English abstract).

    [98]

    Zhu Ronglin. 1988. Lithium and human health[J]. Chinese Bulletin of Life Sciences, 1(2): 26−29 (in Chinese).

    [99]

    Zhu Xueliang. 2007. NLTE Effects of Li in Late–type Stellar Atmosphere[D]. Jinan: Shandong Normal University, 1–50(in Chinese with English abstract).

    [100]

    阿依夏木·沙吾尔, 贾宏涛, 米娜瓦尔·努尔艾合买提, 白灯莎·买买提艾力. 2010. 草甸盐土改良过程中锂和铷分布和变化特征研究[J]. 新疆农业科学, 47(4): 765−769.

    [101]

    北京同仁医院血液组. 1982. 碳酸锂对造血组织的作用[J]. 医学研究通讯, (12): 18−19, 4.

    [102]

    蔡文静, 常春平, 宋帅, 李静, 张芳, 李发东. 2013. 德州灌区地表水中溶解态痕量金属的空间分布及来源研究[J]. 环境科学学报, 33(3): 754−761.

    [103]

    陈青云, 冼苏, 黄瑞衡, 秦映芬, 韦美娥, 何聿忠. 1995. 甲状腺机能亢进症头发锌、硒、钒、锂、锗5种微量元素的动态变化[J]. 广东微量元素科学, (6): 34−37.

    [104]

    陈晓静, 祁建华, 刘宁, 等. 2014. 青岛近海不同天气状况下大气气溶胶中金属元素浓度分布特征研究[J]. 环境科学, 35(10): 3651−3662.

    [105]

    陈有和, Young W. 2008. 锂对中枢神经和血液系统的作用(一)[J]. 中国处方药, (6): 57−59.

    [106]

    邓世荣. 2000. 微量元素锂和人体健康[J]. 广东微量元素科学, (11): 12−14. doi: 10.3969/j.issn.1006-446X.2000.11.003

    [107]

    杜臣昌, 刘恩峰, 羊向东, 吴艳宏, 薛滨. 2012. 巢湖沉积物重金属富集特征与人为污染评价[J]. 湖泊科学, 24(1): 59−66. doi: 10.3969/j.issn.1003-5427.2012.01.008

    [108]

    高娟琴, 于扬, 王登红, 刘丽君, 代鸿章, 郭唯明. 2019. 川西甲基卡稀有金属矿田地表水中稀有金属元素分布特征及意义[J]. 地质学报, 93(6): 1331−1341. doi: 10.3969/j.issn.0001-5717.2019.06.013

    [109]

    韩继龙. 2018. 青海南部含盐盆地卤水水化学及其地质意义研究[D]. 西宁: 中国科学院大学(中国科学院青海盐湖研究所), 1–135.

    [110]

    贺军, 周丽婷, 李娜, 刘特, 郑东春, 曲笑锋, 黄鉴, 叶琳. 2012. ICP–MS法测定长白山天然矿泉水中18种微量元素的含量[J]. 吉林大学学报(医学版), 38(6): 1223−1226.

    [111]

    呼文亮. 2006a. 微量元素锂的健康效应(a)[J]. 广东微量元素科学, (6): 36.

    [112]

    呼文亮. 2006b. 微量元素锂的健康效应(b)[J]. 广东微量元素科学, (6): 43.

    [113]

    黄润乾. 1999. 潮汐效应、系统自转效应对双星物质交换过程的影响[J]. 天体物理学报, (2): 171−177.

    [114]

    季雨桐, 曹生奎, 曹广超, 李华非. 2021. 青海湖沙柳河流域夏季河水和地下水水化学特征[J]. 青海师范大学学报(自然科学版), 37(2): 63−75.

    [115]

    蒋超, 燕文明, 何翔宇, 王小林, 宋勇锋, 吴斌, 田玢, 刘天杨. 2023. 变化水文条件下高原河流微量元素的分布及溯源[J]. 水电能源科学, 41(1): 55−58+5.

    [116]

    康明亮, 陈繁荣, 吴世军, 张荣, 杨永强, 王立安. 2010. Se在北山花岗岩地下水中的化学形态及浓度控制分析[J]. 辐射防护, 30(6): 327−334.

    [117]

    李磊, 高婧, 李海畅, 林野, 周贻兵, 刘利亚. 2016. 电感耦合等离子体质谱法测定大气PM2.5中22种元素的方法[J]. 环境与职业医学, 33(6): 620−623.

    [118]

    李增禧, 潘伟健, 谭永基, 劳志华, 黄丽仪, 肖永兵. 2013a. 中药微量元素数据(1)[J]. 广东微量元素科学, 20(2): 55−70.

    [119]

    李增禧, 潘伟健, 谭永基, 劳志华, 黄丽仪, 肖永兵. 2013b. 中药微量元素数据(2)[J]. 广东微量元素科学, 20(3): 42−70.

    [120]

    李增禧, 潘伟健, 谭永基, 劳志华, 黄丽仪, 肖永兵. 2013c. 中药微量元素数据(3)[J]. 广东微量元素科学, 20(4): 50−62.

    [121]

    李增禧, 潘伟健, 谭永基, 劳志华, 黄丽仪, 肖永兵. 2013d. 中药微量元素数据(4)[J]. 广东微量元素科学, 20(5): 35−62.

    [122]

    林碧霞, 洗苏, 夏宁, 刘红, 黄瑞衡, 张桂福, 何聿忠, 林文业, 罗建慧, 黄丽娟. 1991. 血清及头发铜、锌、硒、铬、钒、锂、锶、锗与甲状腺功能亢进症关系的初步探索[J]. 广西医学, (1): 4−9.

    [123]

    林琳, 王屹林. 2019. 长白山天池水资源综合研究[J]. 吉林地质, 38(1): 60−66, 101. doi: 10.3969/j.issn.1001-2427.2019.01.013

    [124]

    刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 张景荣. 1984. 元素地球化学[M]. 北京: 科学出版社, 1−548.

    [125]

    陆敏, 张卫国, 师育新, 俞立中, 郑祥民. 2003. 太湖北部沉积物金属和营养元素的垂向变化及其影响因素[J]. 湖泊科学, (3): 213−220. doi: 10.3321/j.issn:1003-5427.2003.03.004

    [126]

    秦俊法. 2000. 锂的生物必需性及人体健康效应[J]. 广东微量元素科学, (3): 1−16. doi: 10.3969/j.issn.1006-446X.2000.03.001

    [127]

    申晓伟. 2017. 河北和北京北部部分温泉特征[D]. 北京: 中国地质大学(北京), 1–72.

    [128]

    苏慧, 朱兆武, 王丽娜, 齐涛. 2019. 从盐湖卤水中提取与回收锂的技术进展及展望[J]. 材料导报, 33(13): 2119−2126. doi: 10.11896/cldb.18050025

    [129]

    王成辉, 王登红, 孙艳等. 2022. 华南重点矿集区稀有和稀土矿产调查研究进展[M]. 北京: 科学出版社, 1–332.

    [130]

    王登红, 王瑞江, 李建康, 赵芝, 于扬, 代晶晶, 陈郑辉, 李德先, 屈文俊, 邓茂春, 付小方, 孙艳, 郑国栋. 2013. 中国三稀矿产资源战略调查研究进展综述[J]. 中国地质, 40(2): 361−370. doi: 10.3969/j.issn.1000-3657.2013.02.001

    [131]

    王登红, 刘丽君, 刘新星, 赵芝, 何晗晗. 2016. 我国能源金属矿产的主要类型及发展趋势探讨[J]. 桂林理工大学学报, 36(1): 21−28. doi: 10.3969/j.issn.1674-9057.2016.01.004

    [132]

    王登红, 刘丽君, 侯江龙, 代鸿章, 于扬, 代晶晶, 田世洪. 2017. 初论甲基卡式稀有金属矿床“五层楼+地下室”勘查模型[J]. 地学前缘, 24(5): 1−7.

    [133]

    王登红, 刘善宝, 于扬, 王成辉, 孙艳, 代鸿章, 李建康, 代晶晶, 王裕先, 赵汀, 马圣钞, 刘丽君. 2019. 川西大型战略性新兴产业矿产基地勘查进展及其开发利用研究[J]. 地质学报, 93(6): 1444−1453. doi: 10.3969/j.issn.0001-5717.2019.06.020

    [134]

    王登红. 2020. 面向全球战略新兴资源时代 探寻中国三稀矿产发展之路[J]. 国土资源科普与文化, (1): 4−11.

    [135]

    王登红, 代鸿章, 于扬等. 2021. 大型锂资源基地调查评价的理论、方法与实践—以川西甲基卡超大型锂矿为例[M]. 北京: 科学出版社, 1–458.

    [136]

    王立军, 张朝生, 章申, 陈能坚, 杨柳. 1998. 珠江广州江段水体中稀土元素的地球化学特征[J]. 地理学报, (5): 71−80. doi: 10.3321/j.issn:0375-5444.1998.05.009

    [137]

    王丽雄, 杨通在, 姜涛, 2006. 大气气溶胶中锂的化学分离与同位素比的质谱检测[J]. 分析化学, (S1): 105–108.

    [138]

    王津义. 1993. 植物波谱特性及其微量元素分析在油气遥感解译中的初步应用[J]. 国土资源遥感, (4): 34–37, 7–66.

    [139]

    汪齐连, 刘丛强, 赵志琦, B. Chetelat, 丁虎. 2008. 长江流域河水和悬浮物的锂同位素地球化学研究[J]. 地球科学进展, (9): 952−958. doi: 10.3321/j.issn:1001-8166.2008.09.006

    [140]

    王仕芳, 李在均. 2010. 离子液体预富集–火焰原子吸收法测定头发中痕量锂[J]. 江南大学学报(自然科学版), 9(6): 695−700.

    [141]

    王学求, 刘汉粮, 王玮, 周建, 张必敏, 徐善法. 2020. 中国锂矿地球化学背景与空间分布: 远景区预测[J]. 地球学报, 41(6): 797−806. doi: 10.3975/cagsb.2020.081201

    [142]

    王祝, 李明礼, 邵蓓, 卓玛曲西, 姜贞贞, 刘高令, 多吉. 2015. 电感耦合等离子体发射光谱法测定西藏日多温泉地热水中11种主次量元素[J]. 岩矿测试, 34(3): 302−307.

    [143]

    王卓, 黄冉笑, 吴大天, 许逢明, 孙巍, 张德会, 赵院冬. 2023. 盐湖卤水型锂矿基本特征及其开发利用潜力评价[J]. 中国地质, 50(1): 102−117.

    [144]

    吴丰昌, 孟伟, 宋永会, 刘征涛, 金相灿, 郑丙辉, 王业耀, 王圣瑞, 姜霞, 卢少勇, 储昭升, 陈艳卿, 王超, 华祖林, 王沛芳, 于志强, 傅家谟. 2008. 中国湖泊水环境基准的研究进展[J]. 环境科学学报, 28(12): 2385−2393.

    [145]

    吴炯, 吴起鑫, 安艳玲, 高世林, 柯鑫辉, 周金雄, 秦立. 2023. 城市化对自然河流微量元素的影响研究—以赤水河流域为例[J]. 地球与环境, 51(1): 56−66.

    [146]

    徐肇锡. 1987. 从锂辉石回收锂的新方法[J]. 无机盐工业, (3): 48.

    [147]

    奚小环, 李敏. 2013. 现代地质工作重要发展领域: “十一五”期间勘查地球化学评述[J]. 地学前缘, 20(3): 161−169.

    [148]

    肖尧, 李晓. 2016. 明香温泉水化学特征、地质成因及价值研究[J]. 人民珠江, 37(3): 90−94. doi: 10.3969/j.issn.1001-9235.2016.03.020

    [149]

    肖应凯, 祁海平, 王蕴慧, 金琳. 1994. 青海大柴达木湖卤水、沉积物和水源水中的锂同位素组成[J]. 地球化学, (4): 329−338. doi: 10.3321/j.issn:0379-1726.1994.04.003

    [150]

    熊大闰. 1992. 关于宇宙锂丰度问题[J]. 天文学进展, (2): 91−102.

    [151]

    闫宏亮, 施建荣. 2018. 发现人类已知锂丰度最高的巨星—极富锂巨星中锂元素的诞生之谜[J]. 物理, 47(12): 788−791. doi: 10.7693/wl20181205

    [152]

    杨师. 2000. 锂与人体健康[J]. 金属世界, (4): 10. doi: 10.3969/j.issn.1000-6826.2000.04.010

    [153]

    杨雨浓. 1986. 国外锂资源、生产及应用[J]. 湖南有色金属, (6): 36−39+18.

    [154]

    叶实现, 陈础, 林敏. 2009. 金汤湾海水温泉医疗保健作用研究[J]. 海峡科学, (7): 59−63. doi: 10.3969/j.issn.1673-8683.2009.07.024

    [155]

    于沨, 王登红, 于扬, 刘丽君, 代鸿章. 2019. 四川甲基卡锂矿区土壤重金属生态风险评价[J]. 环境科学与技术, 42(S1): 232−240.

    [156]

    于沨, 王伟, 于扬, 王登红, 刘善宝, 高娟琴, 吕秉廷, 刘丽君. 2021. 川西九龙地区锂铍矿区土壤重金属分布特征及生态风险评价[J]. 岩矿测试, 40(3): 408−424.

    [157]

    于沨, 于扬, 王登红, 高娟琴, 王成辉, 郭唯明. 2022. 锂同位素地球化学在地热流体水岩反应中的应用—以川西现代富锂热泉研究为例[J]. 岩石学报, 38(2): 472−482. doi: 10.18654/1000-0569/2022.02.11

    [158]

    于扬, 王登红, 于沨, 王伟, 刘丽君, 高娟琴, 郝雪峰. 2019. 川西甲基卡大型锂资源基地绿色调查及环境评价指标体系的建立[J]. 岩矿测试, 38(5): 534−544.

    [159]

    于扬, 王伟, 王登红, 高娟琴, 刘善宝, 袁蔺平, 于沨, 张塞. 2021. 水化学找矿法及其在大型资源基地绿色调查中的应用—以川西九龙地区地表水化学找矿为例[J]. 岩矿测试, 40(2): 227−238.

    [160]

    余永卫, 黄彦云, 吴铭, 姚道光, 何聿忠, 林文业, 罗建慧, 黄丽娟, 林葵. 1995. 再障头发、血清和骨髓组织钴、锂元素含量的变化[J]. 广东微量元素科学, (6): 41−44.

    [161]

    曾昭华, 曾雪萍. 1995. 地下水中锂的形成及其与人群健康的关系[J]. 江西地质科技, (4): 189−190.

    [162]

    战景明, 马跃峰, 古晓娜, 刘占旗. 2008. 锂及其化合物的健康损伤效应研究进展[J]. 国外医学(卫生学分册), (6): 374−377.

    [163]

    张飞, 金章东. 2022. 解密: 水文主导河流和海水Li同位素变化[J]. 地球环境学报, 13(3): 354−356.

    [164]

    张宏峰, 周洪伟, 程焰芳, 谢进, 潘心红, 彭荣飞. 2017. 超声辅助提取–电感耦合等离子体质谱法测定PM2.5中26种元素[J]. 中国卫生检验杂志, 27(7): 926−930.

    [165]

    张晓宇. 2021. 地质流体中锂、钠、钾配合物的计算模拟研究[D]. 南京: 南京大学, 1–90.

    [166]

    张雪, 周训, 李再光, 王莹, 许庭武, 郭小娟. 2010. 河北丰宁县洪汤寺温泉的水化学与同位素特征[J]. 水文地质工程地质, 37(5): 123−127. doi: 10.3969/j.issn.1000-3665.2010.05.023

    [167]

    郑亚新, 章铭陶, 朱炳球, 朱立新. 1988. 云南热海热田中的碱金属元素[J]. 自然资源学报, (1): 16−27. doi: 10.3321/j.issn:1000-3037.1988.01.003

    [168]

    周海燕, 周训, 柳春晖, 虞岚, 李娟, 梁永国. 2008. 广东省从化温泉热矿水水化学与同位素特征[J]. 自然资源学报, (4): 705−712. doi: 10.3321/j.issn:1000-3037.2008.04.018

    [169]

    周小龙. 2010. 武山温泉地热资源状况及开发利用前景分析[J]. 甘肃地质, 19(3): 55−59.

    [170]

    朱丽. 2021. 黏土型锂资源矿物学特征及绿色浸出工艺研究[D]. 贵阳: 贵州师范大学, 1–75.

    [171]

    朱荣林. 1988. 锂与人体健康[J]. 生物科学信息, 1(2): 26−29.

    [172]

    朱学亮. 2007. 晚型恒星大气中锂元素非局部热动平衡效应的研究[D]. 济南: 山东师范大学, 1–50.

  • 加载中

(2)

计量
  • 文章访问数:  27
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2023-03-16
修回日期:  2023-05-17
刊出日期:  2025-03-25

目录