中国地质调查局 中国地质科学院主办
科学出版社出版

复杂断裂区地应力场分布特征及扰动机制研究—以鄂尔多斯盆地定北地区上古生界为例

沈杰, 徐浩, 邓虎成, 何建华, 李国峰, 刘岩, 宋威国, 邓乃尔, 武瑾. 2025. 复杂断裂区地应力场分布特征及扰动机制研究—以鄂尔多斯盆地定北地区上古生界为例[J]. 中国地质, 52(1): 315-330. doi: 10.12029/gc20230421004
引用本文: 沈杰, 徐浩, 邓虎成, 何建华, 李国峰, 刘岩, 宋威国, 邓乃尔, 武瑾. 2025. 复杂断裂区地应力场分布特征及扰动机制研究—以鄂尔多斯盆地定北地区上古生界为例[J]. 中国地质, 52(1): 315-330. doi: 10.12029/gc20230421004
SHEN Jie, XU Hao, DENG Hucheng, HE Jianhua, LI Guofeng, LIU Yan, SONG Weiguo, DENG Naier, WU Jin. 2025. Distribution characteristics and disturbance mechanism of geostress field in complex fault zone: A case study of Upper Paleozoic in Dingbei area of Ordos Basin[J]. Geology in China, 52(1): 315-330. doi: 10.12029/gc20230421004
Citation: SHEN Jie, XU Hao, DENG Hucheng, HE Jianhua, LI Guofeng, LIU Yan, SONG Weiguo, DENG Naier, WU Jin. 2025. Distribution characteristics and disturbance mechanism of geostress field in complex fault zone: A case study of Upper Paleozoic in Dingbei area of Ordos Basin[J]. Geology in China, 52(1): 315-330. doi: 10.12029/gc20230421004

复杂断裂区地应力场分布特征及扰动机制研究—以鄂尔多斯盆地定北地区上古生界为例

  • 基金项目: 四川省科技计划杰出青年科技人才项目“页岩气储层天然裂缝评价”(2020JDJQ0058)资助。
详细信息
    作者简介: 沈杰,男,1999年生,硕士,主要从事非常规油气储层地应力场精细描述研究;E−mail:1982510085@qq.com
    通讯作者: 徐浩,男,1990年生,博士,副教授,主要从事油气田开发地质研究;E−mail:xuhao19@cdut.edu.cn。;  武瑾,女,1988年生,博士,高级工程师,主要从事页岩气开发地质研究;E-mail:wujinouc@petrochina.com.cn
  • 中图分类号: P618.13

Distribution characteristics and disturbance mechanism of geostress field in complex fault zone: A case study of Upper Paleozoic in Dingbei area of Ordos Basin

  • Fund Project: Supported by the project of sichuan Science and Technology Program Outstanding Young Scientific Talents (No. 2020JDJQ0058).
More Information
    Author Bio: SHEN Jie, born in 1999, master, mainly engaged in fine description of geostress field in unconventional oil and gas reservoirs; E-mail:1982510085@qq.com .
    Corresponding authors: XU Hao, born in 1990, Ph.D., associate professor, mainly engaged in oil and gas field development geological research; E-mail:xuhao19@cdut.edu.cn WU Jin, born in 1988, Ph.D., senior engineer, mainly engaged in shale gas development geological research; E-mail: wujinouc@petrochina.com.cn.
  • 研究目的

    鄂尔多斯盆地定北地区上古生界致密气资源丰富,勘探潜力巨大,但区内断裂广泛发育,断裂带附近地应力场特征规律不明,严重制约该区油气勘探开发。

    研究方法

    本文基于差应变实验、声发射实验、测井解释地应力大小、波速各向异性实验、古地磁实验、成像测井与偶极声波测井资料解释地应力方向、数值模拟等多方法融合开展研究区上古生界地应力场特征精细解析,以期查明定北地区地应力场分布特征及其扰动机制。

    研究结果

    定北地区上古生界三向应力具有垂向主应力>最大主应力>最小主应力的特征,区域地应力场大小主要受断裂带控制,应力扰动程度与断裂部位、断裂规模、断裂成因等因素有关,其中溶塌型断裂带区域三向应力相对最低。区域主应力场方向为N35°E~N45°E,储层地应力方向主要受区域主应力场方向和断裂带控制,不同类型断裂带引起的地应力扰动范围和扰动程度存在差异,其中地应力扰动范围主要受断裂走向与断层长度所影响。

    结论

    基于地应力场特征研究,本文明确了定北地区地应力大小及方向的分布特征和扰动规律,探讨了不同成因断裂带对地应力大小的扰动机制,并建立了研究区地应力方向扰动宽度预测模型,对后续井网部署及压裂改造等具有重要参考价值。

  • 加载中
  • 图 1  研究区地质背景图

    Figure 1. 

    图 2  研究区哈巴湖断裂典型剖面(剖面位置见图1d)

    Figure 2. 

    图 3  DB13井太2段2号样品45°声发射曲线图

    Figure 3. 

    图 4  DB23井上古生界单井地应力剖面

    Figure 4. 

    图 5  地应力方向测井解释结果图

    Figure 5. 

    图 6  定北地区上古生界单井地应力方向分布图(底图为太2段底部构造图)

    Figure 6. 

    图 7  研究区地质模型图

    Figure 7. 

    图 8  定北地区太二段主应力和差应力分布模拟图

    Figure 8. 

    图 9  定北地区岩心照片

    Figure 9. 

    图 10  不同成因断裂带应力扰动模式图

    Figure 10. 

    图 11  哈巴湖主断裂附近地应力扰动范围(测线L位置见图12)

    Figure 11. 

    图 12  定北地区地应力扰动带平面分布图(其他图例见图1

    Figure 12. 

    图 13  扰动宽度影响因素分析

    Figure 13. 

    图 14  扰动宽度三维计算图版

    Figure 14. 

    表 1  定北地区上古生界差应变实验结果

    Table 1.  Experimental results of Upper Paleozoic differential strain in Dingbei area

    井号 层位 深度/m 三向主应力/MPa 三向主应力梯度/(MPa/100 m)
    水平最大 水平最小 垂向 水平最大 水平最小 垂向
    DB15 山1段 3765.80 61.62 57.65 91.51 1.6363 1.5308 2.4300
    DB17 太2段 3937.50 74.33 65.26 95.68 1.8877 1.6573 2.4299
    DB20 盒1段 3764.40 66.45 56.17 91.47 1.7652 1.4921 2.4298
    DB23 太2段 3991.70 63.92 55.22 97.00 1.6013 1.3833 2.4300
    DB27 太2段 3799.40 70.91 64.46 92.33 1.8663 1.6965 2.4301
    DB31 盒1段 3774.80 61.59 58.11 91.73 1.6316 1.5394 2.4300
    DB32 山1段 3756.20 63.05 56.95 91.28 1.6785 1.5161 2.4301
    下载: 导出CSV

    表 2  定北地区上古生界声发射实验结果

    Table 2.  Acoustic emission experiment results of Upper Paleozoic in Dingbei area

    井号 层位 深度/m 岩性 kaiser点应力值/MPa 最大主应力/
    MPa
    最小主应力/
    MPa
    垂向地应力/
    MPa
    45° 90° 垂直
    DB12 盒1段 3704.16~3704.30 灰白色粗砂岩 40.41 44.19 31.94 51.28 72.56 63.89 83.33
    DB13 太2段 3917.95~3918.11 灰白色粗砂岩 39.41 30.51 22.84 48.86 73.32 56.74 82.76
    DB501 盒1段 3809.09~3809.23 浅灰色中砂岩 39.28 28.50 20.64 50.13 72.25 53.59 83.09
    DB501 盒1段 3864.10~3864.22 浅灰色细砂岩 41.25 28.65 22.64 50.64 74.73 56.03 84.08
    DB2201 盒1段 3675.43~3675.56 浅灰色含砾粗砂岩 44.74 38.34 32.47 59.49 76.54 64.27 91.29
    下载: 导出CSV

    表 3  定北地区太2段现今地应力大小模拟结果及误差分析

    Table 3.  Simulation results and error analysis of current geostress in Tai 2 member of Dingbei area

    井号 σH/MPa σh/MPa σv/MPa σHσh)/MPa
    测量值 模拟值 误差值 测量值 模拟值 误差值 测量值 模拟值 误差值 测量值 模拟值 误差值
    DB13 73.32 72.00 −1.32 56.74 58.00 1.26 82.76 92.00 9.24 16.58 14.00 −2.58
    DB17 74.33 70.00 −4.33 65.26 60.00 −5.26 95.68 95.00 −0.68 9.07 10.00 0.93
    DB23 63.92 66.00 2.08 55.22 54.00 −1.22 97.00 96.00 −1.00 8.70 12.00 3.30
    DB27 70.91 62.00 −8.91 64.46 54.00 −10.46 92.33 85.00 −7.33 6.45 8.00 1.55
    下载: 导出CSV

    表 4  定北地区太2段现今地应力方向模拟结果及误差分析

    Table 4.  Simulation results and error analysis of current geostress direction of Tai 2 member in Dingbei area

    井号 实测手段 实测方向 模拟方向 差值/ (°)
    DB13 波速各向异性+古地磁 N76.73°E N64.00°E −12.73
    DB17 波速各向异性+古地磁 N48.05°E N55.00°E 6.95
    DB23 波速各向异性+古地磁 N68.90°E N75.00°E 6.10
    DB27 波速各向异性+古地磁 N49.13°E N106.00°E 56.87
    DB18 成像测井 N42.00°E N50.00°E 8.00
    DB26 偶极声波 N61.50°E N64.00°E 2.50
    下载: 导出CSV
  • [1]

    Chen Shijie, Xiao Ming, Chen Juntao, Ren Junqing. 2020. Disturbance law of faults to in−situ stress field directions and its inversion analysis method[J]. Journal of Rock Mechanics and Engineering, 39(7): 1434−1444 (in Chinese with English abstract).

    [2]

    Chen Wei, Wu Zhiping, Hou feng, Kong Fei. 2010. Internal structures of fault zones and their relationship with hydrocarbon migration and accumulation[J]. Acta Petrolei Sinica, 31(5): 774−780 (in Chinese with English abstract).

    [3]

    Fu H L, Xu W, Wu Y M. 2023. Study on the distribution law of crustal stress in fault fracture area[J]. Applied Sciences, 13(13): 7678. doi: 10.3390/app13137678

    [4]

    He Jianhua, Cao Feng, Deng Hucheng, Wang Yuanyuan, Li Yong, Xu Qinglong. 2022. Evaluation of in−situ stress in dense sandstone reservoirs in the second member of Xujiahe Formation of the HC area of the Sichuan Basin and its application to dense sandstone gas development[J]. Geology in China, 50(4): 1107−1121 (in Chinese with English abstract).

    [5]

    Huang Tao, Liu Yan, He Jianhua, Ye Tairan, Deng Hucheng, Li Ruixue, Li Kesai, Zhang Jiawei. 2023. Evaluation method and engineering application of in−situ stress of deep tight sandstone reservoir in the second member of Xujiahe Formation in Xiaoquan−Fenggu area, western Sichuan[J]. Geology in China, 51(1): 89−104 (in Chinese with English abstract).

    [6]

    Huang Rongzun, Zhuang Jinjiang. 1986. A new method for predicting formation fracture pressure[J]. Oil Drilling & Production Technology, (3): 1−14 (in Chinese).

    [7]

    Jia Ailin, Wei Yunsheng, Guo Zhi, Wang Guoting, Meng Deiwei, Huang Suqi. 2022. Development status and prospect of tight sandstone gas in China[J]. Natural Gas Industry, 42(1): 83−92 (in Chinese with English abstract).

    [8]

    Jia Xiaoliang, Cui Hongqing, Zhang Zimin. 2010. Numerical simulation of geostatic stress influening factor at the end of fault[J]. Coal Geology & Exploration, 38(4): 47−51 (in Chinese with English abstract).

    [9]

    Li Jing, Liu Chen, Liu Huimin, Xu Yanchao, Xie Li, Huang Guipeng. 2021. Distribution and influencing factors of in−situ in complex fault tectonic region[J]. Journal of China University of Mining and Technology, 50(1): 123−137 (in Chinese with English abstract).

    [10]

    Li Tang, Fu Meiyan, Deng Hucheng, Li Xiaohui, Wang Kunyu, Ran Hui. 2023. Diagenetic facies and distribution of tight sandstone reservoirs containing volcanic ash: A case study of the Upper Paleozoic in Dingbei area[J]. Natural Gas Geoscience, 34(10): 1768−1779 (in Chinese with English abstract).

    [11]

    Li Y J, Chen L W, Tan P, Li H. 2014. Lower crustal flow and its relation to the surface deformation and stress distribution in western Sichuan region, China[J]. Journal of Earth Science, 25(4): 630−637. doi: 10.1007/s12583-014-0467-x

    [12]

    Liu Hongping. 2017. Field Development Geologic Evaluation of Tight Gas Sandstones in Taiyuan Formation, Dingbei Area, Ordos Basin, China[D]. Wuhan: China University of Geosciences, 1−204 (in Chinese with English abstract).

    [13]

    Liu Yingjun, Zhu Haiyan, Tang Xuanhe, Sun Hansen, Zhang Binhai Chen Zhengrong. 2022. Four−dimensional in−situ stress model of CBM reservoirs based on geology–engineering integration[J]. Natural Gas Industry, 42(2): 82−92 (in Chinese with English abstract).

    [14]

    Liu Z Y, Zhao H F, Shi H W. 2022. Experimental study on stress monitoring in fractured−vuggy carbonate reservoirs before and after fracturing[J]. Journal of Petroleum Science and Engineering, 218: 110958. doi: 10.1016/j.petrol.2022.110958

    [15]

    Liu Zhongchun, Lü Xinrui, Li Yukun, Zhang Hui. 2016. Mechanism of faults acting on in−situ stress field direction[J]. Petroleum and Natural Gas Geology, 37(3): 387−393 (in Chinese with English abstract).

    [16]

    Luo Jianqiang, He Zhongming. 2008. Tectonic evolution and oil−gas distributoon in the mesozoic Ordos Basin[J]. Geology and Resources, 17(2): 135−138 (in Chinese with English abstract).

    [17]

    Lü Jing. 2017. Continental Facies Shale Formation Rock Mechanical Characteristics and Stress Field Evaluation Technique[D]. Chengdu: Chengdu University of Technology, 1−164 (in Chinese with English abstract).

    [18]

    Qi Hongwei, Shen Jie. 2023. Fracture development characteristics and influencing factors of Upper Paleozoic in Dingbei area[J]. World Petroleum Industry, 30(4): 48−54 (in Chinese with English abstract).

    [19]

    Shan Yuming, Zhou Wen, Tong Kaijun, Xie Runcheng. 2010. Application of synthetic evaluation for present ground stress field in deep formation of XC gas field in western Sichuan[J]. Mineralogy and Petrology, 30(3): 69−76 (in Chinese with English abstract).

    [20]

    Sun Lijian, Zhu Yuanqing, Yang Guangliang, Yin Jiyao. 2009. Numerical simulation of ground stress field at ends and vicinity of a fault[J]. Journal of Geodesy and Geodynamics, 29(2): 7−12 (in Chinese with English abstract).

    [21]

    Su Shengrui. 2001. The Effect of Fractures on Rock Stresses and Its Significance in Geological Engineering[D]. Chengdu: Chengdu University of Technology, 1−153 (in Chinese with English abstract).

    [22]

    Su Shengrui, Wang Shitian, Zhu Hehua. 2022. The effect of faults on geostress fields[C]// China Science and Technology Press, 662−667 (in Chinese with English abstract).

    [23]

    Weng Jianqiao, Zeng Lianbo, Lü Wenya, Liu Qi, Zu Kewei. 2020. Width of stress disturbed zone near fault and its influencing factors[J]. Journal of Geomechanics, 26(1): 39−47 (in Chinese with English abstract).

    [24]

    Wu Xiaoqi, Ni Chunhua, Chen Yingbin, Zhu Jianhui, Li Kuang, Zeng Huasheng. 2019. Source of the Upper Paleozoic natural gas in Dingbei area in the Ordos Basin[J]. Natural Gas Geoscience, 30(6): 819−827 (in Chinese with English abstract).

    [25]

    Xian Chenggang. 2018. Shale gas geological engineering integrated modeling and numerical simulation: Present conditions, challenges and opportunities[J]. Petroleum Science and Technology Forum, 37(5): 24−34 (in Chinese with English abstract).

    [26]

    Xu Ke, Dai Junsheng, Shang Lin, Fang Lu, Feng Jianwei, Du He. 2019. Characteristics and infiuencing factors of in−situ stress of Nanpu sag, Bohai Bay basin, China[J]. Journal of China University of Mining & Technology, 48(3): 570−583 (in Chinese with English abstract).

    [27]

    Xu Ke, Tian Jun, Yang Haijun, Zhang Hui, Wang Zhimin, Yuan Fang, Wang Haiying. 2020. Prediction of current in−situ stress filed and its application of deeply buried tight sandstone reservoir: A case study of Keshen 10 gas reservoir in Kelasu structural belt, Tarim Basin[J]. Journal of China University of Mining & Technology, 49(4): 708−720 (in Chinese with English abstract).

    [28]

    Xu Ke, Zhang Hui, Liu Xinyu, Wang Zhimin, Lai Shujun. 2022. Current in−situ stress characteristics of deep fractured reservoirs in Kuqa Depression and its guiding significance to natural gas exploration and development[J]. Petroleum Geology and Recovery Efficiency, 29(2): 34−45 (in Chinese with English abstract).

    [29]

    Xu Liming, Zhou Lifa, Zhang Yikai, Dang Ben. 2006. Characteristics and tectonic setting of tectono−stress field of Ordos Basin[J]. Tectonics and Mineralogy, 30(4): 455−462 (in Chinese with English abstract).

    [30]

    Zhang Chong. 2015. The Fracture Characteristics, Causes and Distribution Evaluation of the Ordovician Karst Reservoir in Daniudi Gas Field[D]. Chengdu: Chengdu University of Technology, 1−103 (in Chinese with English abstract).

    [31]

    Zhang Wei, Lu Tao. 2019. Control effect of fault system on gas−water distribution in Dingbei area[J]. Science and Technology & Innovation, (16): 81−82 (in Chinese).

    [32]

    Zhang Xiaoju, He Jianhua, Xu Qinglong, Ye Tairan, Deng Hucheng, Xu Zhengqi, Cao Feng, Yuan Yunqi. 2022. Distribution characteristics and disturbance mechanism of presnt in−situ stress field in the second member of Xujiane formation in Hechuan area[J]. Mineral Rock, 42(4): 71−82 (in Chinese with English abstract).

    [33]

    Zhang Yueqiao, Liao Changzhen. 2006. Transition of the Late Mesozoic–Cenozoic tectonic regimes and modification of the Ordos Basin[J]. Geology in China, 33(1): 28−40 (in Chinese with English abstract).

    [34]

    Zhao Ronghua. 2021. Types and models of gas accumulation in Upper Paleozoic in Dingbei area[J]. Journal of Hebei GEO University, 44(3): 37−40 (in Chinese with English abstract).

    [35]

    Zhao Yuting, Duan Dong, Yang Yao, Fang Chaohe, Qu Xiaoming, Kang Zhiqin. 2015. Numerical simulation on influence factors of ground stress at the end of fault[J]. Safety in Coal Mines, 46(10): 210−213 (in Chinese with English abstract).

    [36]

    陈世杰, 肖明, 陈俊涛, 任俊卿. 2020. 断层对地应力场方向的扰动规律及反演分析方法[J]. 岩石力学与工程学报, 39(7): 1434−1444.

    [37]

    陈伟, 吴智平, 侯峰, 孔菲. 2010. 断裂带内部结构特征及其与油气运聚关系[J]. 石油学报, 31(5): 774−780. doi: 10.7623/syxb201005012

    [38]

    何建华, 曹峰, 邓虎成, 王园园, 李勇, 徐庆龙. 2022. 四川盆地HC地区须二段致密砂岩储层地应力评价及其在致密气开发中的应用[J]. 中国地质, 50(4): 1107−1121.

    [39]

    黄滔, 刘岩, 何建华, 叶泰然, 邓虎成, 李瑞雪, 李可赛, 张家维. 2023. 川西孝泉−丰谷地区须二段深层致密砂岩储层地应力大小评价方法及其工程应用[J]. 中国地质, 51(1): 89−104.

    [40]

    黄荣樽, 庄锦江. 1986. 一种新的地层破裂压力预测方法[J]. 石油钻采工艺, (3): 1−14.

    [41]

    贾爱林, 位云生, 郭智, 王国亭, 孟德伟, 黄苏琦. 2022. 中国致密砂岩气开发现状与前景展望[J]. 天然气工业, 42(1): 83−92. doi: 10.3787/j.issn.1000-0976.2022.01.008

    [42]

    贾晓亮, 崔洪庆, 张子敏. 2010. 断层端部地应力影响因素数值分析[J]. 煤田地质与勘探, 38(4): 47−51. doi: 10.3969/j.issn.1001-1986.2010.04.011

    [43]

    李静, 刘晨, 刘惠民, 许艳超, 解丽, 黄贵朋. 2021. 复杂断层构造区地应力分布规律及其影响因素[J]. 中国矿业大学学报, 50(1): 123−137.

    [44]

    李傥, 伏美燕, 邓虎成, 李晓慧, 王琨瑜, 冉辉. 2023. 含火山灰的致密砂岩储层成岩相及其分布—以定北地区上古生界为例[J]. 天然气地球科学, 34(10): 1768−1779.

    [45]

    刘洪平. 2017. 鄂尔多斯盆地定北地区太原组致密砂岩气层开发地质评价[D]. 武汉: 中国地质大学, 1−204.

    [46]

    刘英君, 朱海燕, 唐煊赫, 孙晗森, 张滨海, 陈峥嵘. 2022. 基于地质工程一体化的煤层气储层四维地应力演化模型及规律[J]. 天然气工业, 42(2): 82−92. doi: 10.3787/j.issn.1000-0976.2022.02.009

    [47]

    刘中春, 吕心瑞, 李玉坤, 张辉. 2016. 断层对地应力场方向的影响机理[J]. 石油与天然气地质, 37(3): 387−393. doi: 10.11743/ogg20160311

    [48]

    罗建强, 何忠明. 2008. 鄂尔多斯盆地中生代构造演化特征及油气分布[J]. 地质与资源, 17(2): 135−138. doi: 10.3969/j.issn.1671-1947.2008.02.010

    [49]

    吕晶. 2017. 陆相泥页岩地层岩石力学特征及地应力场评价技术[D]. 成都: 成都理工大学, 1−164.

    [50]

    齐宏伟, 沈杰. 2023. 定北地区上古生界裂缝发育特征及影响因素[J]. 世界石油工业, 30(4): 48−54.

    [51]

    单钰铭, 周文, 童凯军, 谢润成. 2010. 现今地应力场特征综合评价技术在川西XC气田深层中的应用[J]. 矿物岩石, 30(3): 69−76. doi: 10.3969/j.issn.1001-6872.2010.03.009

    [52]

    孙礼健, 朱元清, 杨光亮, 尹继尧. 2009. 断层端部及附近地应力场的数值模拟[J]. 大地测量与地球动力学, 29(2): 7−12. doi: 10.3969/j.issn.1671-5942.2009.02.003

    [53]

    苏生瑞. 2001. 断裂构造对地应力场的影响及其工程意义[D]. 成都: 成都理工学院, 1−153.

    [54]

    苏生瑞, 王士天, 朱合华. 2002. 断裂对地应力场影响的研究[C]//岩石力学新进展与西部开发中的岩土工程问题—中国岩石力学与工程学会第七次学术大会论文集: 中国科学技术出版社, 662−667.

    [55]

    翁剑桥, 曾联波, 吕文雅, 刘奇, 祖克威. 2020. 断层附近地应力扰动带宽度及其影响因素[J]. 地质力学学报, 26(1): 39−47. doi: 10.12090/j.issn.1006-6616.2020.26.01.004

    [56]

    吴小奇, 倪春华, 陈迎宾, 朱建辉, 李贶, 曾华盛. 2019. 鄂尔多斯盆地定北地区上古生界天然气来源[J]. 天然气地球科学, 30(6): 819−827. doi: 10.11764/j.issn.1672-1926.2019.03.015

    [57]

    鲜成钢. 2018. 页岩气地质工程一体化建模及数值模拟: 现状、挑战和机遇[J]. 石油科技论坛, 37(5): 24−34. doi: 10.3969/j.issn.1002-302x.2018.05.005

    [58]

    徐珂, 戴俊生, 商琳, 房璐, 冯建伟, 杜赫. 2019. 南堡凹陷现今地应力特征及影响因素[J]. 中国矿业大学学报, 48(3): 570−583.

    [59]

    徐珂, 田军, 杨海军, 张辉, 王志民, 袁芳, 王海应. 2020. 深层致密砂岩储层现今地应力场预测及应用—以塔里木盆地克拉苏构造带克深10气藏为例[J]. 中国矿业大学学报, 49(4): 708−720.

    [60]

    徐珂, 张辉, 刘新宇, 王志民, 来姝君. 2022. 库车坳陷深层裂缝性储层现今地应力特征及其对天然气勘探开发的指导意义[J]. 油气地质与采收率, 29(2): 34−45.

    [61]

    徐黎明, 周立发, 张义楷, 党犇. 2006. 鄂尔多斯盆地构造应力场特征及其构造背景[J]. 大地构造与成矿学, 30(4): 455−462. doi: 10.3969/j.issn.1001-1552.2006.04.007

    [62]

    张冲. 2015. 大牛地气田奥陶系岩溶储层裂缝特征、成因及分布评价[D]. 成都: 成都理工大学, 1−103.

    [63]

    张威, 卢涛. 2019. 定北地区断裂系统对气水分布的控制作用[J]. 科技与创新, (16): 81−82.

    [64]

    张小菊, 何建华, 徐庆龙, 叶泰然, 邓虎成, 徐争启, 曹峰, 阮韵琪. 2022. 合川地区须二段现今地应力场分布特征与扰动机制研究[J]. 矿物岩石, 42(4): 71−82. doi: 10.3969/j.issn.1001-6872.2022.4.kwys202204007

    [65]

    张岳桥, 廖昌珍. 2006. 晚中生代—新生代构造体制转换与鄂尔多斯盆地改造[J]. 中国地质, 33(1): 28−40. doi: 10.3969/j.issn.1000-3657.2006.01.003

    [66]

    赵荣华. 2021. 定北地区上古生界天然气成藏类型及模式[J]. 河北地质大学学报, 44(3): 37−40.

    [67]

    赵钰挺, 段东, 杨瑶, 方朝合, 曲晓明, 康志勤. 2015. 断层端部地应力分布规律影响因素的数值模拟[J]. 煤矿安全, 46(10): 210−213.

  • 加载中

(14)

(4)

计量
  • 文章访问数:  81
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2023-04-21
修回日期:  2023-10-01
刊出日期:  2025-01-25

目录