中国地质调查局 中国地质科学院主办
科学出版社出版

西藏库拉岗日穹窿锂铍锡等稀有金属特征、成矿规律及其对找矿的指示

付建刚, 李光明, 王根厚, 郭伟康, 张海, 张林奎, 金灿海, 董随亮, 焦彦杰, 李应栩. 2025. 西藏库拉岗日穹窿锂铍锡等稀有金属特征、成矿规律及其对找矿的指示[J]. 中国地质, 52(4): 1179-1203. doi: 10.12029/gc20230425002
引用本文: 付建刚, 李光明, 王根厚, 郭伟康, 张海, 张林奎, 金灿海, 董随亮, 焦彦杰, 李应栩. 2025. 西藏库拉岗日穹窿锂铍锡等稀有金属特征、成矿规律及其对找矿的指示[J]. 中国地质, 52(4): 1179-1203. doi: 10.12029/gc20230425002
FU Jiangang, LI Guangming, WANG Genhou, GUO Weikang, ZHANG Hai, ZHANG Linkui, JIN Canhai, DONG Suiliang, JIAO Yanjie, LI Yingxu. 2025. Characteristics and metallogeny of Li−Be−Sn rare metals in the Kulagangri Dome in Xizang and their implications for prospecting[J]. Geology in China, 52(4): 1179-1203. doi: 10.12029/gc20230425002
Citation: FU Jiangang, LI Guangming, WANG Genhou, GUO Weikang, ZHANG Hai, ZHANG Linkui, JIN Canhai, DONG Suiliang, JIAO Yanjie, LI Yingxu. 2025. Characteristics and metallogeny of Li−Be−Sn rare metals in the Kulagangri Dome in Xizang and their implications for prospecting[J]. Geology in China, 52(4): 1179-1203. doi: 10.12029/gc20230425002

西藏库拉岗日穹窿锂铍锡等稀有金属特征、成矿规律及其对找矿的指示

  • 基金项目: 国家重点研发计划项目(2021YFC2901903、2023YFC2908400)、国家自然科学基金项目(91955208)、第二次青藏高原综合科学考察研究资助(2019QZKK0806)及中国地质调查局项目(DD20230337、DD20230281)联合资助。
详细信息
    作者简介: 付建刚,男,1987年生,博士,副研究员,主要从事于构造地质与成矿理论研究;E-mail:fujiangangcd@163.com
    通讯作者: 李光明,男,1965年生,研究员,主要从事于矿产资源勘查与评价、区域成矿规律与成矿预测研究;E-mail:13982257109@163.com
  • 中图分类号: P618.2

Characteristics and metallogeny of Li−Be−Sn rare metals in the Kulagangri Dome in Xizang and their implications for prospecting

  • Fund Project: Supported by National Key Research and Development Plan (No.2021YFC2901903, No.2023YFC2908400), National Natural Science Foundation of China (No.91955208), the Second Tibetan Plateau Scientific Expedition and Research (No.2019QZKK0806), and the projects of China Geological Survey (No.DD20230337, No.DD20230281).
More Information
    Author Bio: FU Jiangang, male, born in 1987, Ph.D., associate researcher, engaged in the study of structural geology and metallogenic theory; E-mail: fujiangangcd@163.com .
    Corresponding author: Li Guangming, male, born in 1965, professor, engaged in the study of mineral resources exploration and evaluation, regional metallogenic regularity and metallogenic prediction; E-mail: 13982257109@163.com.
  • 研究目的

    喜马拉雅成矿带近年来在锂铍铌钽等稀有金属找矿方面取得重大突破,通过1∶5万矿产地质调查实施,在喜马拉雅成矿带东段的库拉岗日穹窿不同位置发现并评价多个不同的矿化类型,代表性的有嘎波伟晶岩型锂矿、次麦矽卡岩型锡铁铅锌多金属矿和木村构造−蚀变岩型金矿。本文通过对库拉岗日穹窿结构的解剖、典型矿床研究、成矿年代学综合研究,其目的是查明喜马拉雅带典型稀有金属矿床的成矿时代、解析穹窿构造−高分异淡色花岗岩−稀有金属成矿关系、总结穹窿构造控矿规律,从而为区域稀有金属找矿预测提供理论依据。

    研究方法

    本文在详细的野外地质调查基础上,开展伟晶岩独居石定年和典型矿床地质特征研究,查明穹窿构造与稀有金属的成矿关系。

    研究结果

    嘎波锂矿位于库拉岗日穹窿东北端,矿体主要赋存在穹窿滑脱系的大理岩中,锂辉石伟晶岩获得独居石U−Th−Pb年龄为23.1 Ma,代表其成矿年龄,矿区北部电气石花岗岩的侵位年龄为19.3 Ma,明显晚于锂矿的成矿时代。次麦锡铁铅锌多金属矿位于库拉岗日穹窿的东段、嘎波锂矿的南部,目前矿区识别出两种矿化类型:(1)矽卡岩型锡铁矿体,矿石矿物主要以锡石、磁铁矿共生为典型特征,在喜马拉雅带属于一种新的矿化类型;(2)矽卡岩型铅锌多金属矿体,两类矿体均产在穹窿滑脱系的大理岩或矽卡岩化大理岩中,矿区与含矿矽卡岩密切相关的伟晶岩独居石U−Th−Pb年龄为23.0 Ma,代表其成矿年龄。木村金矿位于库拉岗日穹窿东南部的盖层中,赋矿围岩主要为一套钙质的粉砂质板岩,控矿构造为北东走向和东西走向的张性断裂。库拉岗日穹窿在空间上由内向外呈现高温岩浆型锂铍稀有金属矿(嘎波)→中—高温矽卡岩型锡铁、铅锌矿(次麦)→中—低温构造−蚀变岩型金矿(木村)的规律变化。库拉岗日穹窿滑脱系中大规模的伸展拆离构造变形、淡色花岗岩的岩浆侵位和高度结晶分异、同构造矽卡岩的形成、锂铍铌钽锡等稀有金属成矿作用在23 Ma左右同时进行。

    结论

    库拉岗日穹窿的东段作为藏南拆离系(STDS)在其北部的一种表现形式,穹窿中高分异淡色花岗岩和大规模拆离断层(对应于区域上STDS)的强烈活动,是锂铍铌钽锡等稀有金属成矿的关键因素,同时也是未来在喜马拉雅成矿带其他典型穹窿构造中寻找新的稀有金属矿的必备条件。

  • 加载中
  • 图 1  喜马拉雅碰撞造山带构造地质简图(据吴福元等,2021

    Figure 1. 

    图 2  西藏洛扎地区库拉岗日穹窿地质图(据李光明等,2022

    Figure 2. 

    图 3  西藏库拉岗日穹窿淡色花岗岩野外手标本照片

    Figure 3. 

    图 4  西藏洛扎地区嘎波锂矿地质简图(据李光明等,2022

    Figure 4. 

    图 5  西藏洛扎嘎波锂矿样品特征照片

    Figure 5. 

    图 6  西藏洛扎嘎波锂矿锂辉石伟晶岩和电气石花岗岩独居石U−Pb年龄谐和图(a、c)和加权平均年龄图(b、d)

    Figure 6. 

    图 7  西藏洛扎地区次麦锡铁铅锌多金属矿地质图(据付建刚等,2022

    Figure 7. 

    图 8  西藏洛扎次麦锡铁铅锌多金属矿矿石显微照片(正交偏光)

    Figure 8. 

    图 9  西藏洛扎次麦矿区野外照片

    Figure 9. 

    图 10  西藏洛扎次麦矿区伟晶岩独居石U−Pb年龄谐和图(a)和加权平均年龄图(b)

    Figure 10. 

    图 11  西藏洛扎木村金矿地质图

    Figure 11. 

    图 12  西藏洛扎木村金矿构造蚀变岩型Au矿化野外特征

    Figure 12. 

    图 13  西藏洛扎库拉岗日穹窿结构图及锂铍、锡等稀有金属成矿关系图

    Figure 13. 

    图 14  西藏洛扎库拉岗日穹窿构造−岩浆作用−稀有金属成矿综合模型图

    Figure 14. 

    表 1  西藏洛扎库拉岗日穹窿独居石U−Pb测年结果

    Table 1.  The U−Pb dating results of monazite from the Kulagangri dome in Luozha, Xizang

    分析点号 232Th/
    10−6
    238U/
    10−6
    Pb(T)/
    10−6
    Pb(C)/
    10−6
    Th/U 同位素比值 rho 表面年龄/Ma
    207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ
    锂辉石伟晶岩样品RBT05-TW1
    RBT05-TW1-01 86070 8397 110 12.5 10.3 0.13742 0.00558 0.07385 0.00282 0.00395 0.00006 0.00101 0.00001 0.39 2195 70.4 72.3 2.7 25.4 0.4 20.5 0.2
    RBT05-TW1-02 94138 5155 110 18.3 18.3 0.17883 0.00726 0.11331 0.00421 0.00470 0.00009 0.00103 0.00001 0.50 2642 68.1 109.0 3.8 30.2 0.6 20.7 0.2
    RBT05-TW1-03 87481 8935 113 9.64 9.8 0.11691 0.00483 0.06475 0.00260 0.00405 0.00006 0.00102 0.00001 0.38 1910 74.1 63.7 2.5 26.1 0.4 20.6 0.2
    RBT05-TW1-04 77009 8882 104 17.4 8.7 0.10424 0.00438 0.05828 0.00235 0.00409 0.00006 0.00102 0.00001 0.36 1702 77.5 57.5 2.3 26.3 0.4 20.6 0.2
    RBT05-TW1-05 92241 4636 95 4.25 19.9 0.15502 0.00756 0.07884 0.00351 0.00377 0.00007 0.00095 0.00001 0.42 2402 83.0 77.1 3.3 24.3 0.4 19.2 0.2
    RBT05-TW1-06 87813 7340 109 13.4 12.0 0.12899 0.00612 0.07079 0.00297 0.00408 0.00007 0.00103 0.00001 0.38 2084 83.6 69.4 2.8 26.2 0.4 20.8 0.2
    RBT05-TW1-07 86886 8510 111 16.4 10.2 0.11915 0.00527 0.06601 0.00272 0.00407 0.00006 0.00102 0.00001 0.34 1944 79.3 64.9 2.6 26.2 0.4 20.6 0.2
    RBT05-TW1-08 99162 6637 115 5.06 14.9 0.14328 0.00684 0.08436 0.00366 0.00435 0.00007 0.00099 0.00001 0.39 2333 81.9 82.2 3.4 28.0 0.5 20.1 0.2
    RBT05-TW1-09 85635 5474 103 10.9 15.6 0.15167 0.00643 0.09503 0.00386 0.00459 0.00008 0.00103 0.00001 0.40 2365 72.5 92.2 3.6 29.5 0.5 20.7 0.2
    RBT05-TW1-10 77955 3577 85 5.53 21.8 0.17197 0.00926 0.10421 0.00488 0.00452 0.00008 0.00099 0.00001 0.37 2577 89.8 100.7 4.5 29.1 0.5 20.1 0.2
    RBT05-TW1-11 87428 4411 94 9.45 19.8 0.14727 0.00731 0.08334 0.00396 0.00425 0.00009 0.00097 0.00001 0.46 2315 85.2 81.3 3.7 27.3 0.6 19.5 0.2
    RBT05-TW1-12 86450 8382 107 14.4 10.3 0.12772 0.00543 0.06698 0.00277 0.00385 0.00006 0.00098 0.00001 0.38 2078 74.5 65.8 2.6 24.8 0.4 19.8 0.2
    RBT05-TW1-13 80911 3569 86 16.2 22.7 0.17667 0.00898 0.10597 0.00520 0.00447 0.00009 0.00096 0.00001 0.41 2622 85.3 102.3 4.8 28.8 0.6 19.4 0.2
    RBT05-TW1-14 85745 3961 88 13.1 21.6 0.18657 0.01012 0.09597 0.00478 0.00385 0.00008 0.00095 0.00001 0.41 2712 89.5 93.0 4.4 24.8 0.5 19.2 0.2
    RBT05-TW1-15 94933 8755 123 6.88 10.8 0.12829 0.00516 0.07494 0.00304 0.00425 0.00006 0.00102 0.00001 0.33 2076 71.0 73.4 2.9 27.4 0.4 20.7 0.2
    RBT05-TW1-16 82593 3034 91 5.27 27.2 0.17747 0.00895 0.13004 0.00631 0.00541 0.00010 0.00100 0.00001 0.37 2629 84.0 124.1 5.7 34.8 0.6 20.2 0.2
    RBT05-TW1-17 84317 4589 91 6.03 18.4 0.13740 0.00647 0.07464 0.00324 0.00398 0.00007 0.00096 0.00001 0.40 2195 82.6 73.1 3.1 25.6 0.4 19.3 0.2
    RBT05-TW1-18 98107 7383 119 13.7 13.3 0.11626 0.00539 0.06527 0.00271 0.00416 0.00006 0.00101 0.00001 0.35 1900 83.3 64.2 2.6 26.8 0.4 20.5 0.2
    RBT05-TW1-19 74544 7550 96 12.9 9.9 0.12135 0.00585 0.06314 0.00283 0.00382 0.00006 0.00101 0.00001 0.33 1976 86.9 62.2 2.7 24.6 0.4 20.3 0.2
    RBT05-TW1-20 100011 7913 120 15.9 12.6 0.12103 0.00508 0.06645 0.00243 0.00406 0.00006 0.00099 0.00001 0.39 1972 74.7 65.3 2.3 26.1 0.4 19.9 0.2
    RBT05-TW1-21 96670 6527 115 6.11 14.8 0.12908 0.00581 0.07725 0.00328 0.00439 0.00007 0.00101 0.00001 0.36 2087 78.5 75.6 3.1 28.3 0.4 20.5 0.2
    RBT05-TW1-22 73825 8146 98 13.1 9.1 0.11784 0.00542 0.06145 0.00269 0.00385 0.00006 0.00103 0.00001 0.35 1924 83.2 60.6 2.6 24.8 0.4 20.7 0.2
    RBT05-TW1-23 89792 8741 116 13.2 10.3 0.11252 0.00429 0.06277 0.00225 0.00409 0.00005 0.00103 0.00001 0.37 1840 69.6 61.8 2.2 26.3 0.3 20.7 0.2
    RBT05-TW1-24 87465 8573 114 16.3 10.2 0.12237 0.00463 0.06819 0.00261 0.00407 0.00006 0.00104 0.00001 0.36 1991 66.7 67.0 2.5 26.2 0.4 21.0 0.2
    RBT05-TW1-25 81085 9237 108 7.04 8.8 0.10893 0.00437 0.06075 0.00229 0.00411 0.00006 0.00101 0.00001 0.42 1783 73.6 59.9 2.2 26.5 0.4 20.3 0.2
    RBT05-TW1-26 99755 3022 95 10.9 33.0 0.18957 0.01172 0.10062 0.00510 0.00402 0.00009 0.00094 0.00001 0.45 2739 101.8 97.4 4.7 25.9 0.6 19.0 0.2
    RBT05-TW1-27 83834 8367 113 15.5 10.0 0.13402 0.00476 0.07724 0.00263 0.00421 0.00005 0.00106 0.00001 0.38 2152 62.5 75.5 2.5 27.1 0.3 21.4 0.2
    RBT05-TW1-28 81307 7383 103 6.29 11.0 0.12213 0.00551 0.06879 0.00298 0.00415 0.00007 0.00102 0.00001 0.39 1987 80.1 67.5 2.8 26.7 0.5 20.6 0.2
    电气石花岗岩样品PM05-1TW1
    PM05-1TW1-1 80830 4328 77.1 1.69 18.7 0.07962 0.00381 0.03592 0.00172 0.00319 0.00006 0.00093 0.00001 0.38 1187.0 89.8 35.8 1.7 20.5 0.4 18.9 0.2
    PM05-1TW1-2 80992 7302 86.5 2.25 11.1 0.06742 0.00331 0.02993 0.00138 0.00316 0.00005 0.00095 0.00001 0.36 850.0 101.8 29.9 1.4 20.3 0.3 19.2 0.2
    PM05-1TW1-3 69324 4634 70.3 1.45 15.0 0.06930 0.00383 0.03108 0.00155 0.00323 0.00006 0.00096 0.00001 0.40 909.3 113.4 31.1 1.5 20.8 0.4 19.4 0.2
    PM05-1TW1-4 61526 3819 61.2 5.00 16.1 0.07859 0.00412 0.03478 0.00169 0.00322 0.00007 0.00096 0.00001 0.42 1162.0 104.5 34.7 1.7 20.7 0.4 19.3 0.2
    PM05-1TW1-5 59202 13103 93.6 6.21 4.5 0.06831 0.00213 0.03320 0.00103 0.00341 0.00005 0.00103 0.00001 0.45 879.6 64.8 33.2 1.0 22.0 0.3 20.8 0.2
    PM05-1TW1-6 64182 4139 63.3 0.85 15.5 0.07535 0.00379 0.03270 0.00156 0.00311 0.00007 0.00095 0.00001 0.44 1077.5 101.4 32.7 1.5 20.0 0.4 19.2 0.2
    PM05-1TW1-7 69735 4942 71.2 6.27 14.1 0.09719 0.00699 0.04527 0.00391 0.00319 0.00007 0.00098 0.00001 0.25 1572.2 134.1 45.0 3.8 20.5 0.4 19.8 0.3
    PM05-1TW1-8 68154 4333 68.3 5.49 15.7 0.07291 0.00408 0.03243 0.00168 0.00321 0.00006 0.00097 0.00001 0.38 1013.0 113.0 32.4 1.7 20.7 0.4 19.5 0.2
    PM05-1TW1-9 82343 3125 75.0 3.80 26.3 0.07939 0.00408 0.03914 0.00184 0.00356 0.00008 0.00094 0.00001 0.46 1183.3 102.3 39.0 1.8 22.9 0.5 19.0 0.2
    PM05-1TW1-10 78101 5321 77.3 0.00 14.7 0.07282 0.00376 0.03127 0.00154 0.00306 0.00005 0.00094 0.00001 0.35 1009.3 104.2 31.3 1.5 19.7 0.3 19.1 0.2
    PM05-1TW1-11 66171 6168 72.4 2.18 10.7 0.06947 0.00288 0.03078 0.00127 0.00314 0.00005 0.00097 0.00001 0.42 922.2 81.3 30.8 1.3 20.2 0.4 19.7 0.2
    PM05-1TW1-12 69863 9270 81.6 0.91 7.5 0.06779 0.00226 0.02788 0.00095 0.00289 0.00004 0.00096 0.00001 0.42 861.1 70.4 27.9 0.9 18.6 0.3 19.4 0.2
    PM05-1TW1-13 80749 2837 72.5 4.35 28.5 0.07190 0.00433 0.03602 0.00198 0.00357 0.00007 0.00093 0.00001 0.34 983.3 123.3 35.9 1.9 23.0 0.4 18.7 0.2
    PM05-1TW1-14 75749 5020 75.1 2.60 15.1 0.07588 0.00375 0.03225 0.00153 0.00303 0.00005 0.00095 0.00001 0.36 1092.3 98.6 32.2 1.5 19.5 0.3 19.2 0.2
    PM05-1TW1-15 81190 7127 84.9 5.75 11.4 0.06987 0.00331 0.02904 0.00127 0.00295 0.00005 0.00095 0.00001 0.37 924.1 93.5 29.1 1.3 19.0 0.3 19.1 0.2
    PM05-1TW1-16 95833 5835 92.8 0.22 16.4 0.07525 0.00331 0.03260 0.00131 0.00310 0.00005 0.00093 0.00001 0.42 1075.9 88.4 32.6 1.3 19.9 0.3 18.8 0.2
    PM05-1TW1-17 71704 3575 68.0 1.74 20.1 0.06449 0.00393 0.03097 0.00177 0.00341 0.00006 0.00093 0.00001 0.33 766.7 125.0 31.0 1.7 22.0 0.4 18.9 0.2
    PM05-1TW1-18 90779 5673 88.1 4.05 16.0 0.07218 0.00340 0.03127 0.00143 0.00306 0.00005 0.00093 0.00001 0.35 990.7 95.5 31.3 1.4 19.7 0.3 18.8 0.2
    PM05-1TW1-19 64590 7418 74.4 0.00 8.7 0.06735 0.00262 0.02924 0.00111 0.00306 0.00005 0.00096 0.00001 0.42 850.0 81.5 29.3 1.1 19.7 0.3 19.4 0.2
    PM05-1TW1-20 42847 4340 48.9 0.00 9.9 0.06277 0.00382 0.02693 0.00157 0.00306 0.00006 0.00100 0.00001 0.33 701.9 134.2 27.0 1.6 19.7 0.4 20.3 0.3
    PM05-1TW1-21 75273 5076 76.0 0.00 14.8 0.07568 0.00367 0.03326 0.00151 0.00313 0.00006 0.00095 0.00001 0.43 1087.0 97.1 33.2 1.5 20.1 0.4 19.2 0.2
    PM05-1TW1-22 81927 4360 77.7 2.77 18.8 0.08399 0.00404 0.03538 0.00164 0.00303 0.00006 0.00094 0.00001 0.41 1292.3 94.0 35.3 1.6 19.5 0.4 18.9 0.2
    PM05-1TW1-23 69171 4567 71.5 3.31 15.1 0.06990 0.00389 0.02990 0.00140 0.00313 0.00006 0.00098 0.00001 0.43 925.6 114.8 29.9 1.4 20.1 0.4 19.9 0.2
    PM05-1TW1-24 74455 5206 76.3 1.54 14.3 0.07618 0.00338 0.03266 0.00147 0.00303 0.00005 0.00097 0.00001 0.39 1099.7 88.9 32.6 1.4 19.5 0.3 19.6 0.2
    伟晶岩样品21CPM01-01TW1
    21CPM01-01TW1-01 83531 6368 99 5.5 13.1 0.08083 0.00491 0.04167 0.00227 0.00382 0.00006 0.00107 0.00001 0.275 1218 119.0 41.4 2.2 24.6 0.4 21.6 0.2
    21CPM01-01TW1-02 86382 14273 133 4.0 6.1 0.05982 0.00336 0.03010 0.00161 0.00368 0.00005 0.00114 0.00001 0.241 598 118.3 30.1 1.6 23.7 0.3 23.0 0.2
    21CPM01-01TW1-03 83835 15830 132 5.8 5.3 0.05459 0.00256 0.02714 0.00122 0.00362 0.00004 0.00110 0.00001 0.264 394 105.5 27.2 1.2 23.3 0.3 22.2 0.2
    21CPM01-01TW1-04 83091 5318 106 15.7 15.6 0.14294 0.01542 0.11787 0.02072 0.00478 0.00017 0.00112 0.00002 0.207 2265 186.6 113 18.8 30.7 1.1 22.6 0.4
    21CPM01-01TW1-05 71296 10817 106 2.5 6.6 0.06476 0.00339 0.03359 0.00175 0.00377 0.00005 0.00110 0.00001 0.245 766 109.2 33.5 1.7 24.3 0.3 22.3 0.2
    21CPM01-01TW1-06 88722 10577 122 4.5 8.4 0.05663 0.00313 0.02863 0.00151 0.00371 0.00005 0.00112 0.00001 0.236 476 122.2 28.7 1.5 23.9 0.3 22.6 0.2
    21CPM01-01TW1-07 71114 18323 131 9.2 3.9 0.04857 0.00224 0.02397 0.00111 0.00358 0.00004 0.00113 0.00001 0.245 128 109.2 24.0 1.1 23.0 0.3 22.9 0.3
    21CPM01-01TW1-08 94015 7073 115 0.0 13.3 0.05710 0.00393 0.03211 0.00199 0.00415 0.00007 0.00108 0.00001 0.256 494 147.2 32.1 2.0 26.7 0.4 21.8 0.2
    21CPM01-01TW1-09 87103 8741 113 0.0 10.0 0.06224 0.00408 0.03072 0.00190 0.00363 0.00006 0.00111 0.00001 0.277 683 108.3 30.7 1.9 23.4 0.4 22.4 0.2
    21CPM01-01TW1-10 75150 5225 90 3.1 14.4 0.07139 0.00472 0.03936 0.00235 0.00409 0.00008 0.00108 0.00001 0.323 969 135.2 39.2 2.3 26.3 0.5 21.9 0.2
    21CPM01-01TW1-11 86146 5197 88 0.2 16.6 0.07288 0.00535 0.03408 0.00229 0.00347 0.00007 0.00097 0.00001 0.284 1011 150.0 34.0 2.3 22.3 0.4 19.5 0.2
    21CPM01-01TW1-12 80009 16695 134 7.9 4.8 0.05764 0.00263 0.02832 0.00130 0.00357 0.00004 0.00113 0.00001 0.266 517 100.0 28.4 1.3 23.0 0.3 22.9 0.2
    21CPM01-01TW1-13 62738 4218 76 1.9 14.9 0.07291 0.00665 0.03583 0.00244 0.00390 0.00008 0.00113 0.00001 0.305 1013 186.3 35.7 2.4 25.1 0.5 22.9 0.2
    21CPM01-01TW1-14 82576 5533 89 6.9 14.9 0.08624 0.00649 0.03947 0.00257 0.00342 0.00007 0.00101 0.00001 0.309 1344 146.3 39.3 2.5 22.0 0.4 20.3 0.2
    21CPM01-01TW1-15 81445 10023 110 1.2 8.1 0.05964 0.00362 0.02987 0.00161 0.00368 0.00005 0.00110 0.00001 0.274 591 131.5 29.9 1.6 23.7 0.3 22.2 0.2
    21CPM01-01TW1-16 76064 5943 92 6.0 12.8 0.07029 0.00564 0.03701 0.00249 0.00399 0.00007 0.00108 0.00001 0.265 937 165.9 36.9 2.4 25.6 0.5 21.8 0.2
    21CPM01-01TW1-17 82370 4495 90 7.1 18.3 0.08351 0.00635 0.04252 0.00290 0.00384 0.00008 0.00105 0.00001 0.292 1281 154.2 42.3 2.8 24.7 0.5 21.2 0.2
    21CPM01-01TW1-18 97037 5688 116 1.1 17.1 0.06343 0.00433 0.03946 0.00249 0.00452 0.00007 0.00112 0.00001 0.256 724 144.4 39.3 2.4 29.1 0.5 22.7 0.2
    21CPM01-01TW1-19 83808 9784 115 5.2 8.6 0.06823 0.00411 0.03487 0.00194 0.00376 0.00006 0.00113 0.00001 0.290 876 124.8 34.8 1.9 24.2 0.4 22.9 0.2
    21CPM01-01TW1-20 73079 10908 105 4.9 6.7 0.06479 0.00387 0.03292 0.00188 0.00372 0.00006 0.00109 0.00001 0.259 769 126.7 32.9 1.8 23.9 0.4 22.0 0.2
    21CPM01-01TW1-21 82836 7187 106 3.3 11.5 0.06285 0.00447 0.03276 0.00222 0.00385 0.00006 0.00115 0.00001 0.249 702 152.6 32.7 2.2 24.8 0.4 23.2 0.2
    21CPM01-01TW1-22 74930 11085 111 3.0 6.8 0.06662 0.00339 0.03401 0.00165 0.00374 0.00006 0.00115 0.00001 0.319 828 105.6 34.0 1.6 24.1 0.4 23.3 0.3
    21CPM01-01TW1-23 87083 4678 89 4.5 18.6 0.06142 0.00597 0.02998 0.00225 0.00375 0.00007 0.00100 0.00001 0.254 654 209.2 30.0 2.2 24.1 0.5 20.1 0.2
    21CPM01-01TW1-24 88271 5027 92 1.3 17.6 0.07190 0.00530 0.03657 0.00244 0.00366 0.00007 0.00101 0.00001 0.282 983 151.1 36.5 2.4 23.6 0.4 20.3 0.2
    21CPM01-01TW1-25 89935 4767 92 9.0 18.9 0.06847 0.00483 0.03447 0.00218 0.00370 0.00008 0.00100 0.00001 0.332 883 150.9 34.4 2.1 23.8 0.5 20.2 0.2
    下载: 导出CSV
  • [1]

    Badanina E V, Veksler I V, Thomas R, Syritso L F, Trumbull R B. 2004. Magmatic evolution of Li–F, rare-metal granites: A case study of melt inclusions in the Khangilay complex, Eastern Transbaikalia (Russia)[J]. Chemical Geology, 210(1): 113−133.

    [2]

    Ballouard C, Elburg M A, Tappe S, Reinke C, Ueckermann H, Doggart S. 2020. Magmatic–hydrothermal evolution of rare metal pegmatites from the Mesoproterozoic Orange River pegmatite belt (Namaqualand, South Africa)[J]. Ore Geology Reviews, 116: 103252. doi: 10.1016/j.oregeorev.2019.103252

    [3]

    Burg J P, Chen G M. 1984. Tectonics and structural zonation of southern Tibet, China[J]. Nature, 311(5983): 219−223. doi: 10.1038/311219a0

    [4]

    Chen Z, Liu Y, Hodges K, Burchfiel B, Royden L, Deng C. 1990. The Kangmar Dome: A metamorphic core complex in southern Xizang (Tibet)[J]. Science, 250(4987): 1552−1556. doi: 10.1126/science.250.4987.1552

    [5]

    Cottle J, Searle M, Horstwood M, Waters D. 2009. Timing of midcrustal metamorphism, melting, and deformation in the Mount Everest region of southern Tibet revealed by U(−Th)−Pb geochronology[J]. The Journal of Geology, 117(6): 643−664. doi: 10.1086/605994

    [6]

    Ding Huixia, Li Wentan, Jiang Yunyun. 2019. The metamorphism and the tectonic implication of the Cuonadong dome, eastern Himalaya[J]. Acta Petrologica Sinica, 35(2): 312−324 (in Chinese with English abstract doi: 10.18654/1000-0569/2019.02.03

    [7]

    Fu Jiangang, Li Guangming, Guo Weikang, Zhang Hai, Dong Suiliang, Zhang Linkui, Li Yingxu, Ma Guotao, Jiao Yanjie. 2024. Discovery of the Cimai skarn–type Sn–Fe–Pb–Zn polymetallic deposit in Kulagangri Dome, Xizang, and its prospecting implications[J]. Geotectonica et Metallogenia, 48(4): 724−736 (in Chinese with English abstract

    [8]

    Fu Jiangang, Li Guangming, Guo Weikang, Zhang Hai, Zhang Linkui, Dong Suiliang, Zhou Limin, Li Yingxu, Jiao Yanjie, Shi Hongzhao. 2023. Mineralogical characteristics of columbite group minerals and its implications for magmatic–hydrothermal transition in the Gabo lithium deposit, Himalayan metallogenic belt[J]. Earth Science Frontiers, 30(5): 134−150 (in Chinese with English abstract

    [9]

    Fu Jiangang, Li Guangming, Dong Suiliang, Zhang Hai, Guo Weikang, Zhang Linkui, Liang Wei, Jiao Yanjie Ling Chen. 2022. Mineral chemistry of garnet and its implication for the magmatic–hydrothermal transition in rare metal leucogranites in the Lalong dome, southern Tibet, China[J]. Sedimentary Geology and Tethyan Geology, 42(2): 288−299 (in Chinese with English abstract

    [10]

    Fu J G, Li G M, Wang G H, Zhang L K, Liang W, Zhang X Q, Jiao Y J, Dong S L. 2022. Structural and kinematic analysis of the Cuonadong Dome, southern Tibet, China: Implications for middle–crust deformation[J]. Journal of Asian Earth Sciences: X, 8: 100112. doi: 10.1016/j.jaesx.2022.100112

    [11]

    Fu Jiangang, Li Guangming, Wang Genhou, Dong Suiliang, Zhang Hai, Guo Weikang, Zhang Linkui, Zhang Xiaoqiong, Jiao Yanjie. 2021. Geological characteristics and metallogenic types of Be–Nb–Ta rare metals in the Lalong dome, Southern Tibet, China[J]. Geotectonica et Metallogenia, 45(5): 913−933 (in Chinese with English abstract).

    [12]

    Fu J G, Li G M, Wang G H, Zhang L K, Liang W, Zhang X Q, Jiao Y J, Dong S L, Huang Y. 2020. Structural analysis of sheath folds and geochronology in the Cuonadong Dome, southern Tibet, China: New constraints on the timing of the South Tibetan detachment system and its relationship to North Himalayan Gneiss Domes[J]. Terra Nova, 32(4): 300−323. doi: 10.1111/ter.12462

    [13]

    Fu J G, Li G M, Wang G H, Zhang L K, Liang W, Zhang X Q, Jiao Y J, Huang Y. 2021. Structural and thermochronologic constraints on skarn rare–metal mineralization in the Cenozoic Cuonadong Dome, Southern Tibet[J]. Journal of Asian Earth Sciences, 205: 104612. doi: 10.1016/j.jseaes.2020.104612

    [14]

    Fu Jiangang, Li Guangming, Dong Suiliang, Zhang Hai, Guo Weikang, Zhang Linkui, Zhang Xiaoqiong, Jiao Yanjie. 2020. Identification and its significances of the Lalong Be–Nb–Ta–bearing albite granite in the Northern Himalaya, Tibet[J]. Sedimentary Geology and Tethyan Geology, 40(2): 91−103 (in Chinese with English abstract

    [15]

    Fu Jiangang, Li Guangming, Wang Genhou, Huang Yong, Zhang Linkui, Dong Suiliang, Liang Wei. 2018. Establishment of the North Himalayan double gneiss domes: Evidence from field identification of the Cuonadong dome, south Tibet[J]. Geology in China, 45(4): 783−802 (in Chinese with English abstract

    [16]

    Guo Weikang, Li Guangming, Fu Jiangang, Zhang Hai, Zhang Linkui, Wu Jianyang, Dong Suiliang, Yang Yulin. 2023. Metallogenic epoch, magmatic evolution and metallogenic significance of the Gabo lithium pegmatite deposit, Himalayan metallogenic belt, Tibet[J]. Earth Science Frontiers, 30(5): 275−297 (in Chinese with English abstract

    [17]

    Hou Zengqian, Mo Xuanxue, Yang Zhiming, Wang Anjian, Pan Guitang, Qu Xiaoming, Nie Fengjun. 2006a. Metallogeneses in the collisional orogen of the Qinghai–Tibet Plateau: Tectonic setting, tempo–spatial distribution and ore deposit types[J]. Geology in China, 33(2): 340−351 (in Chinese with English abstract

    [18]

    Hou Zengqian, Qu Xiaoming, Yang Zhusen, Meng Xiangjin, Li Zhenqing, Yang Zhiming, Zheng Mianping, Zheng Youye, Nie Fengjun, Gao Yongfeng, Jiang Sihong, Li Guangming. 2006b. Metallogenesis in Tibetan collisional orogenic belt: Ⅲ. Mineralization in post–collisional extension setting[J]. Mineral Deposits, 25(6): 629−651 (in Chinese with English abstract).

    [19]

    Jackson S, Pearson N, Griffin W, Belousova E. 2004. The application of laser ablation–inductively coupled plasma–mass spectrometry to in situ U–Pb zircon geochronology[J]. Chemical Geology, 211(1): 47−69.

    [20]

    Jessup M J, Langille J, Cottle J, Ahmad T. 2016. Crustal thickening, Barrovian metamorphism, and exhumation of midcrustal rocks during doming and extrusion: Insights from the Himalaya, NW India[J]. Tectonics, 35(1): 160−186. doi: 10.1002/2015TC003962

    [21]

    Jiao Yanjie, Huang Xuri, Li Guangming, Fu Jiangang, Liang Shenxian, Guo Jing. 2023. Prospecting methods and deep geological setting of the Gabo pegmatite lithium deposit in the Himalayan metallogenic belt[J]. Earth Science Frontiers, 30(5): 255−264 (in Chinese with English abstract).

    [22]

    Kawakami T, Aoya M, Wallis S, Lee J, Terada K, Wang Y, Heizler M. 2007. Contact metamorphism in the Malashan dome, North Himalayan gneiss domes, southern Tibet: An example of shallow extensional tectonics in the Tethys Himalaya[J]. Journal of Metamorphic Geology, 25(8): 831−853. doi: 10.1111/j.1525-1314.2007.00731.x

    [23]

    Langille J M, Jessup M J, Cottle J M, Lederer G, Ahmad T. 2012. Timing of metamorphism, melting and exhumation of the Leo Pargil dome, northwest India[J]. Journal of Metamorphic Geology, 30(8): 769−791. doi: 10.1111/j.1525-1314.2012.00998.x

    [24]

    Langille J, Lee J, Hacker B, Seward G. 2010. Middle crustal ductile deformation patterns in southern Tibet: Insights from vorticity studies in Mabja Dome[J]. Journal of Structural Geology, 32(1): 70−85. doi: 10.1016/j.jsg.2009.08.009

    [25]

    Lee J, Hacker B, Wang Y. 2004. Evolution of North Himalayan gneiss domes: Structural and metamorphic studies in Mabja Dome, southern Tibet[J]. Journal of Structural Geology, 26(12): 2297−2316. doi: 10.1016/j.jsg.2004.02.013

    [26]

    Lee J, Hager C, Wallis S, Stockli D, Whitehouse M, Aoya M, Wang Y. 2011. Middle to Late Miocene extremely rapid exhumation and thermal reequilibration in the Kung Co rift, southern Tibet[J]. Tectonics, 30(2): 1−26.

    [27]

    Li Guangming, Fu Jiangang, Guo Weikang, Zhang Hai, Zhang Linkui, Dong Suiliang, Li Yingxu, Wu Jianyang, Jiao Yanjie, Jin Canhai, Huang Chunmei. 2022. Discovery of the Gabo granitic pegmatite–type lithium deposit in the Kulagangri Dome, eastern Himalayan metallogenic belt, and its prospecting implication[J]. Acta Petrologica et Mineralogica, 41(6): 1109−1119 (in Chinese with English abstract

    [28]

    Li Guangming, Zhang Linkui, Jiao Yanjie, Xia Xiangbiao, Dong Suiliang, Fu Jiangang, Liang Wei, Zhang Zhi, Wu Jianyang, Dong Lei, Huang Yong. 2017. First discovery and implications of Cuonadong superlarge Be–W–Sn polymetallic deposit in Himalayan metallogenic belt, southern Tibet[J]. Mineral Deposits, 36(4): 1003−1008 (in Chinese with English abstract).

    [29]

    Li Guangming, Zhang Linkui, Zhang Zhi, Xia Xiangbiao, Liang Wei, Hou Chunqiu. 2021. New exploration progresses, resource potentials and prospecting targets of strategic minerals in the southern Qinghai–Tibet Plateau[J]. Sedimentary Geology and Tethyan Geology, 41(2): 351−360 (in Chinese with English abstract).

    [30]

    Liang Wei, Liang Guangming, Basang Yuandan, Zhang Linkui, Fu Jiangang, Huang Yong, Zhang Zhi, Wang Yiyun, Cao Huawen. 2021. Metallogenesis of Himalaya gneiss dome: An example from Cuonadong gneiss dome in Zhaxikang ore concentration area[J]. Mineral Deposits, 40(5): 932−948 (in Chinese with English abstract).

    [31]

    Liu Chen, Wang Rucheng, Wu Fuyuan, Xie Lei, Liu Xiaochi. 2021. First report of elbaite–lepidolite subtype pegmatite in the Himalaya leucogranite belt[J]. Acta Petrologica Sinica, 37(11): 3287−3300 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.11.03

    [32]

    Liu Xiaochi, Wu Fuyuan, Wang Rucheng, Liu Zhichao, Wang Jiamin, Liu Chen, Hu Fangyang, Yang Lei, He Shaoxiong. 2021. Discovery of spodumene–bearing pegmatites from Ra Chu in the Mount Qomolangma region and its implications for studying rare metal mineralization in the Himalayan orogen[J]. Acta Petrologica Sinica, 37(11): 3295−3304 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.11.04

    [33]

    Liu Z C, Wu F Y, Ding L, Liu X C, Wang J G, Ji W Q. 2016. Highly fractionated Late Eocene (−35 Ma) leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet[J]. Lithos, 240–243: 337–354.

    [34]

    Liu Z C, Wu F Y, Liu X C, Wang J G, Yin R, Qiu Z L, Ji W Q, Yang L. 2019. Mineralogical evidence for fractionation processes in the Himalayan leucogranites of the Ramba Dome, southern Tibet[J]. Lithos, 340–341: 71–86.

    [35]

    Lu Rukui, Zhong Huaming, Tong Jinsong, Xia Jun, Li Yunhuai. 2005. Tectonic deformation features of the detachment fault in Luozha area, Tibet[J]. Geotectonica et Metallogenia, 29(2): 189−197 (in Chinese with English abstract).

    [36]

    Mo Ruwei, Sun Xiaoming, Zhai Wei, Zhou Feng, Liang Yeheng. 2013. Ore–forming fuid geochemistry and metallogenic mechanism from Mazhala gold–antimony deposit in southern Tibet, China[J]. Acta Petrologica Sinica, 29(4): 1427−1438 (in Chinese with English abstract).

    [37]

    Nie Fengjun, Hu Peng, Jiang Sihong, Li Zhenqing, Liu Yan, Zhou Yongzhang. 2005. Type and temporal–spatial distribution of gold and antimony deposits (prospects)in Southern Tibet, China[J]. Acta Geologica Sinica, 79(3): 373−385 (in Chinese with English abstract).

    [38]

    Qi Xuexiang, Li Tianfu, Meng Xiangjin, Yu Chunlin. 2008. Cenozoic tectonic evolution of the Tethyan Himalayan foreland fault–fold belt in southern Tibet, and its constraint on antimony–gold polymetallic minerogenesis[J]. Acta Petrologica Sinica, 24(7): 1638−1648 (in Chinese with English abstract).

    [39]

    Qin Kezhang, Zhao Junxing, He Changtong, Shi Ruizhe. 2021. Discovery of the Qongjiagang giant lithium pegmatite deposit in Himalaya. Tibet, China[J]. Acta Petrologica Sinica, 37(11): 3277−3286 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.11.02

    [40]

    Qing Chengshi, Ding Jun, Li Yingxu, Dong Lei, Dai Zuowen. 2014. Element combination anomalies and prospecting direction in Mazhala gold–antimony deposit[J]. Metal Mine, (12): 134−137 (in Chinese with English abstract).

    [41]

    Wagner T, Lee J, Hacker B, Seward G. 2010. Kinematics and vorticity in Kangmar Dome, southern Tibet: Testing midcrustal channel flow models for the Himalaya[J]. Tectonics, 29(6): 1−26.

    [42]

    Wang Rucheng, Wu Fuyuan, Xie Lei, Liu Xiaochi, Wang Jiamin, Yang Lei, Lai Wen, Liu Chen. 2017. A preliminary study of rare–metal mineralization in the Himalayan leucogranite belts, South Tibet[J]. Science China Earth Sciences, 60(9): 1655−1663. doi: 10.1007/s11430-017-9075-8

    [43]

    Wu Fuyuan, Guo Chunli, Hu Fangyang, Liu Xiaochi, Zhao Junxing, Li Xiaofeng, Qin Kezhang. 2023. Petrogenesis of the highly fractionated granites and their mineralizations in Nanling Range, South China[J]. Acta Petrologica Sinica, 39(1): 1−36 (in Chinese with English abstract). doi: 10.18654/1000-0569/2023.01.01

    [44]

    Wu Fuyuan, Liu Zhichao, Liu Xiaochi, Ji Weiqiang. 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift[J]. Acta Petrologica Sinica, 31(1): 1−36 (in Chinese with English abstract).

    [45]

    Wu Fuyuan, Wang Rucheng, Liu Xiaochi, Xie Lei. 2021. New breakthroughs in the studies of Himalayan rare–metal mineralization[J]. Acta Petrologica Sinica, 37(11): 3261−3276 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.11.01

    [46]

    Wu F Y, Liu X C, Ji W Q, Wang J M, Yang L. 2017. Highly fractionated granites: Recognition and research[J]. Science China Earth Sciences, 60(7): 1201−1219. doi: 10.1007/s11430-016-5139-1

    [47]

    Xie Lei, Wang Rucheng, Tian Ennong, Liu Zhichao, Liu Xiaochi, Cheng Feiyue, Hu Huan, Che Xudong, Liu Chen. 2021. Oligocene Nb–Ta–W–mineralization related to the Xiaru leucogranite in the Himalayan Orogen[J]. Chinese Science Bulletin, 66: 4574−4591 (in Chinese with English abstract). doi: 10.1360/TB-2021-0546

    [48]

    Yang Z S, Hou Z Q, Meng X J, Liu Y C, Fei H C, Tian S H, Li Z Q, Gao W. 2009. Post–collisional Sb and Au mineralization related to the South Tibetan detachment system, Himalayan orogen[J]. Ore Geology Reviews, 36(1/3): 194−212.

    [49]

    Yang Zhusen, Hou Zengqian, Gao Wei, Wang Haiping, Li Zhenqing, Meng Xiangjin, Qu Xiaoming. 2006. Metallogenic characteristics and genetic model of antiony and gold deposits in South Tibetan Detachment System[J]. Acta Geologica Sinica, 80(9): 1377−1391 (in Chinese with English abstract

    [50]

    Zhai W, Sun X M, Yi J Z, Zhang X G, Mo R W, Zhou F, Wei H X, Zeng Q G. 2014. Geology, geochemistry, and genesis of orogenic gold–antimony mineralization in the Himalayan Orogen, South Tibet, China[J]. Ore Geology Reviews, 58: 68−90. doi: 10.1016/j.oregeorev.2013.11.001

    [51]

    Zhang J J, Santosh M, Wang X X, Guo L, Yang X Y, Zhang B. 2012. Tectonics of the northern Himalaya since the India–Asia collision[J]. Gondwana Research, 21(4): 939−960. doi: 10.1016/j.gr.2011.11.004

    [52]

    Zhang Jinjiang, Guo Lei, Zhang Bo. 2007. Structure and kinematics of the Yalashanbo dome in the Northern Himalayan dome belt, China[J]. Chinese Journal of Geology, 42(1): 16−30 (in Chinese with English abstract).

    [53]

    Zhang Jinjiang, Yang Xiongying, Qi Guowei, Wang Dechao. 2011. Geochronology of the Malashan dome and its application in formation of the Southern Tibet detachment system (STDS) and Northern Himalayan gneiss domes (NHGD)[J]. Acta Petrologica Sinica, 27(12): 3535−3544 (in Chinese with English abstract

    [54]

    Zhao Junxing, He Changtong, Oin Kezhang, Shi Ruizhe, Liu Xiaochi, Hu Fangyang, Yu Kelong, Sun Zhenghao. 2021. Geochronology, source features and the characteristics of fractional crystallization in pegmatite at the Qiongjiagang giant pegmatite–type lithium deposit, Himalaya, Tibet[J]. Acta Petrologica Sinica, 37(11): 3325−3347 (in Chinese with English abstract doi: 10.18654/1000-0569/2021.11.06

    [55]

    Zhou Qifeng, Qin Kezhang, He Changtong, Wu Huaying, Liu Yuchao, Niu Xianglong, Mo Lingchao, Liu Xiaochi, Zhao Junxing. 2021. Li–Be–Nb–Ta mineralogy of the Kuqu leucogranite and pegmatite in the Eastern Himalaya, Tibet, and its implication[J]. Acta Petrologica Sinica, 37(11): 3305−3324 (in Chinese with English abstract doi: 10.18654/1000-0569/2021.11.05

    [56]

    丁慧霞, 李文坛, 江媛媛. 2019. 喜马拉雅造山带东段错那洞片麻岩穹窿的变质作用及构造意义[J]. 岩石学报, 35(2): 312−324. doi: 10.18654/1000-0569/2019.02.03

    [57]

    付建刚, 李光明, 董随亮, 张海, 郭伟康, 张林奎, 梁维, 焦彦杰, 凌晨. 2022. 西藏拉隆穹窿淡色花岗岩中石榴子石矿物学研究及对岩浆–热液过程的指示[J]. 沉积与特提斯地质, 42(2): 288−299.

    [58]

    付建刚, 李光明, 董随亮, 张海, 郭伟康, 张林奎, 张小琼, 焦彦杰. 2020. 西藏北喜马拉雅拉隆穹隆含Be、Nb、Ta钠长石花岗岩的识别及意义[J]. 沉积与特提斯地质, 40(2): 91−103.

    [59]

    付建刚, 李光明, 郭伟康, 张海, 董随亮, 张林奎, 李应栩, 马国桃, 焦彦杰. 2024. 西藏库拉岗日穹窿次麦矽卡岩型锡铁铅锌多金属矿的发现及其意义[J]. 大地构造与成矿学, 48(4): 724−736.

    [60]

    付建刚, 李光明, 郭伟康, 张海, 张林奎, 董随亮, 周利敏, 李应栩, 焦彦杰, 石洪召. 2023. 喜马拉雅成矿带嘎波锂矿铌铁矿族矿物学特征及对岩浆–热液过程的指示[J]. 地学前缘, 30(5): 134−150.

    [61]

    付建刚, 李光明, 王根厚, 董随亮, 张海, 郭伟康, 张林奎, 张小琼, 焦彦杰. 2021. 西藏拉隆穹窿地质特征和Be–Nb–Ta稀有金属矿化的厘定及其战略意义[J]. 大地构造与成矿学, 45(5): 913−933.

    [62]

    付建刚, 李光明, 王根厚, 黄勇, 张林奎, 董随亮, 梁维. 2018. 北喜马拉雅双穹隆构造的建立: 来自藏南错那洞穹隆的厘定[J]. 中国地质, 45(4): 783−802.

    [63]

    郭伟康, 李光明, 付建刚, 张海, 张林奎, 吴建阳, 董随亮, 杨玉林. 2023. 喜马拉雅成矿带嘎波伟晶岩型锂矿成矿时代、岩浆演化及成矿指示意义[J]. 地学前缘, 30(5): 275−297.

    [64]

    侯增谦, 莫宣学, 杨志明, 王安建, 潘桂棠, 曲晓明, 聂凤军. 2006a. 青藏高原碰撞造山带成矿作用: 构造背景、时空分布和主要类型[J]. 中国地质, 33(2): 340−351.

    [65]

    侯增谦, 曲晓明, 杨竹森, 孟祥金, 李振清, 杨志明, 郑绵平, 郑有业, 聂凤军, 高永丰, 江思宏, 李光明. 2006b. 青藏高原碰撞造山带: Ⅲ. 后碰撞伸展成矿作用[J]. 矿床地质, 25(6): 629−651.

    [66]

    焦彦杰, 黄旭日, 李光明, 付建刚, 梁生贤, 郭镜. 2023. 喜马拉雅成矿带嘎波伟晶岩型锂矿的找矿方法与深部背景研究[J]. 地学前缘, 30(5): 255−264.

    [67]

    李光明, 付建刚, 郭伟康, 张海, 张林奎, 董随亮, 李应栩, 吴建阳, 焦彦杰, 金灿海, 黄春梅. 2022. 西藏喜马拉雅成矿带东段嘎波伟晶岩型锂矿的发现及其意义[J]. 岩石矿物学杂志, 41(6): 1109−1119.

    [68]

    李光明, 张林奎, 焦彦杰, 夏祥标, 董随亮, 付建刚, 梁维, 张志, 吴建阳, 董磊, 黄勇. 2017. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J]. 矿床地质, 36(4): 1003−1008.

    [69]

    李光明, 张林奎, 张志, 夏祥标, 梁维, 侯春秋. 2021. 青藏高原南部的主要战略性矿产: 勘查进展、资源潜力与找矿方向[J]. 沉积与特提斯地质, 41(2): 351−360.

    [70]

    梁维, 李光明, 巴桑元旦, 张林奎, 付建刚, 黄勇, 张志, 王艺云, 曹华文. 2021. 喜马拉雅带片麻岩穹窿成矿作用——以扎西康矿集区错那洞穹窿为例[J]. 矿床地质, 40(5): 932−948.

    [71]

    刘晨, 王汝成, 吴福元, 谢磊, 刘小驰. 2021. 珠峰地区锂成矿作用: 喜马拉雅淡色花岗岩带首个锂电气石–锂云母型伟晶岩[J]. 岩石学报, 37(11): 3287−3300.

    [72]

    刘小驰, 吴福元, 王汝成, 刘志超, 王佳敏, 刘晨, 胡方泱, 杨雷, 何少雄. 2021. 珠峰地区热曲锂辉石伟晶岩的发现及对喜马拉雅稀有金属成矿作用研究的启示[J]. 岩石学报, 37(11): 3295−3304.

    [73]

    鲁如魁, 钟华明, 童劲松, 夏军, 李运怀. 2005. 西藏洛扎地区拆离断层构造变形特征[J]. 大地构造与成矿学, 29(2): 189−197.

    [74]

    莫儒伟, 孙晓明, 翟伟, 周峰, 梁业恒. 2013. 藏南马扎拉金锑矿床成矿流体地球化学和成矿机制[J]. 岩石学报, 29(4): 1427−1438.

    [75]

    聂凤军, 胡朋, 江思宏, 李振清, 刘妍, 周永章. 2005. 藏南地区金和锑矿床(点)类型及其时空分布特征[J]. 地质学报, 79(3): 373−385. doi: 10.3321/j.issn:0001-5717.2005.03.009

    [76]

    戚学祥, 李天福, 孟祥金, 于春林. 2008. 藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用[J]. 岩石学报, 24(7): 1638−1648.

    [77]

    秦克章, 赵俊兴, 何畅通, 施睿哲. 2021. 喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义[J]. 岩石学报, 37(11): 3277−3286. doi: 10.18654/1000-0569/2021.11.02

    [78]

    卿成实, 丁俊, 李应栩, 董磊, 代作文. 2014. 马扎拉金锑矿元素组合异常及找矿方向[J]. 金属矿山, (12): 134−137.

    [79]

    王汝成, 吴福元, 谢磊, 刘小池, 王佳敏, 杨雷, 赖文, 刘晨. 2017. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J]. 中国科学: 地球科学, 47(8): 871−880.

    [80]

    吴福元, 郭春丽, 胡方泱, 刘小驰, 赵俊兴, 李晓峰, 秦克章. 2023. 南岭高分异花岗岩成岩与成矿[J]. 岩石学报, 39(1): 1−36.

    [81]

    吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 47(7): 745−765.

    [82]

    吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩[J]. 岩石学报, 31(1): 1−36.

    [83]

    吴福元, 王汝成, 刘小驰, 谢磊. 2021. 喜马拉雅稀有金属成矿作用研究的新突破[J]. 岩石学报, 37(11): 3261−3276. doi: 10.18654/1000-0569/2021.11.01

    [84]

    谢磊, 王汝成, 田恩农, 刘志超, 吴福元, 刘小驰, 程飞越, 胡欢, 车旭东, 刘晨. 2021. 喜马拉雅夏如渐新世淡色花岗岩铌钽钨成矿作用[J]. 科学通报, 66(35): 4574−4591.

    [85]

    杨竹森, 侯增谦, 高伟, 王海平, 李振清, 孟祥金, 曲晓明. 2006. 藏南拆离系锑金成矿特征与成因模式[J]. 地质学报, 80(9): 1377−1391. doi: 10.3321/j.issn:0001-5717.2006.09.013

    [86]

    张进江, 郭磊, 张波. 2007. 北喜马拉雅穹隆带雅拉香波穹隆的构造组成和运动学特征[J]. 地质科学, 42(1): 16−30. doi: 10.3321/j.issn:0563-5020.2007.01.003

    [87]

    张进江, 杨雄英, 戚国伟, 王德朝. 2011. 马拉山穹窿的活动时限及其在藏南拆离系–北喜马拉雅片麻岩穹窿形成机制的应用[J]. 岩石学报, 27(12): 3535−3544.

    [88]

    赵俊兴, 何畅通, 秦克章, 施睿哲, 刘小驰, 胡方泱, 余可龙, 孙政浩. 2021. 喜马拉雅琼嘉岗超大型伟晶岩锂矿的形成时代、源区特征及分异特征[J]. 岩石学报, 37(11): 3325−3347. doi: 10.18654/1000-0569/2021.11.06

    [89]

    周起凤, 秦克章, 何畅通, 吴华英, 刘宇超, 牛向龙, 莫凌超, 刘小驰, 赵俊兴. 2021. 喜马拉雅东段库曲岩体锂、铍和铌钽稀有金属矿物研究及指示意义[J]. 岩石学报, 37(11): 3305−3324. doi: 10.18654/1000-0569/2021.11.05

  • 加载中

(14)

(1)

计量
  • 文章访问数:  51
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2023-04-25
修回日期:  2023-11-07
刊出日期:  2025-07-25

目录