Distribution, origin, application and prospecting prospect analysis of diatomite in the world
-
摘要:
研究目的 硅藻土是死亡的硅藻等单细胞生物通过沉积等一系列地质作用形成的矿物,属于沉积岩类,其主要成分是SiO2。硅藻土是社会生产活动中必不可少的非金属矿产资源,因其具有多孔性、吸附性强、轻质、熔点高、隔热、吸声、化学性能稳定等特点,在污水处理、农业、建材领域以及其新兴技术领域应用广泛。
研究方法 本文通过收集整理资料,充分借鉴前人的研究成果,对世界范围内硅藻土资源分布、矿床成因类型以及在传统与新兴技术领域的应用进行了调研。
研究结果 硅藻土资源广泛分布于全球122个国家,目前世界硅藻土总储量约9.2亿t,其中美国资源最为丰富,其储量约2.5亿t,占世界总量的27.2%;中国硅藻土储量约1.7亿t,占世界总储量的18%左右。根据硅藻土形成机制和沉积环境的不同,将矿床类型分为海相沉积型矿床和陆相沉积型矿床,两种矿床均受到地质构造、气候环境、时间、适宜的沉积环境等因素的共同控制。
结论 综合全球资料,从硅藻土矿床的成因分析表明:硅藻土矿床集中分布在新近纪至第四纪火山构造产生的断陷盆地和山间盆地中,同时与玄武岩分布存在直接联系,对于气候潮湿、环境温暖,且雨量较充足的地带可作为硅藻土矿床找矿远景区域。如中国东部地区易形成火山构造的洼地、东南部地区在新近纪时期有较多火山喷发活动的前海盆地、西南部地区喜山运动形成的中小型构造盆地等,特别是一些以玄武岩为基底及有玄武岩分布地区的新生代盆地可作为我国陆相沉积型硅藻土矿床找矿远景区。而北太平洋中高纬度地区在渐新世晚期—中新世早期,通过构造活动和火山活动共同作用形成了边缘盆地。中新世中晚期硅藻土在深海底层水缺氧条件下提高了沉积速率,使得这片区域硅藻土广泛分布。因此,北太平洋北部以及白令海、鄂霍茨克海和日本海等都可作为海相沉积型硅藻土矿床的找矿远景区。
Abstract:This paper is the result of mineral exploration engineering.
Objective Diatomaceous earth is a mineral formed by single−celled organisms such as dead diatoms through deposition and a series of geological processes. It belongs to sedimentary rocks, and its main component is SiO2. Diatomite is an indispensable non−metallic mineral resource in my country's social production activities, because of its porosity, strong adsorption, light weight, high melting point, heat insulation, sound absorption, low refractive index, stable chemical properties, etc. It is widely used in sewage treatment, agriculture, building materials and its emerging technology fields.
Methods In this paper, by collecting and sorting out data and fully drawing on previous research results, this paper investigates the distribution of diatomite resources in the world, the genetic types of deposits, and its application in traditional and emerging technology fields.
Results Diatomaceous earth resources are widely distributed in 122 countries in the world. At present, the total reserves of diatomaceous earth in the world are about 920 million tons, of which the United States is the most abundant, its reserves are about 250 million tons, accounting for 27.2% of the world's total. China's diatomaceous earth reserves are about 170 million tons, accounting for about 18% of the world's total reserves. According to the different formation mechanism and sedimentary environment of diatomite, the deposit types are divided into Marine sedimentary deposit and continental sedimentary deposit, both of which are affected by the superposition of geological structure, climatic environment, time condition and suitable sedimentary environment.
Conclusions Combined with domestic and foreign data, the genetic analysis of diatomite deposits shows that diatomite deposits are concentrated in fault basins and intermountain basins generated by volcanic structures from Tertiary to Quaternary, and are directly related to the distribution of basalt. The zone with humid climate, warm environment and sufficient rainfall can be used as a prospecting prospect area for diatomite deposits. For example, the depression in the eastern part of China is easy to form volcanic structure, the foresea basin in the southeast area has more volcanic eruption activities in the Neogene period, and the small and medium−sized tectonic basin formed by the mountain movement in the southwest area, especially some Cenozoic basins with basalt base and basalt distribution area can be used as the prospecting prospect of continental sedimentary diatomite deposits in China. In the middle and high latitudes of the North Pacific Ocean, marginal basins were formed through the interaction of tectonic and volcanic activities in the late Oligocene and early Miocene. In the middle and late Miocene, the deposition rate of diatomite increased under the hypoxia condition of the deep sea bottom water, which made diatomite widely distributed in this area. Therefore, the northern part of the North Pacific Ocean, the Bering Sea, the Sea of Okhotsk and the Sea of Japan can be used as prospecting prospects for Marine sedimentary diatomite deposits.
-
-
图 2 雷州半岛硅藻土矿床分布(据冯璜等, 1995修改)
Figure 2.
图 3 吉林省硅藻土矿产地分布图(据王健等, 2022)
Figure 3.
图 4 研究区实测地层剖面位置及地质图(据Pasquaré et al., 1988修改)
Figure 4.
图 5 研究区地理位置及硅藻土位置(据Pedersen, 1981修改)
Figure 5.
表 1 世界主要国家或地区硅藻土产量及储量(103 t)
Table 1. Production and reserves of diatomite in major countries or regions in the world (103 t)
国家或地区 产量 储量2022 2019 2020 2021 2022 阿根廷 95r 99r 100e 100e NA 澳大利亚 11e 11e 11 11 NA 中国 141 140e 140e 140e 150000 丹麦 400 423r 420e 400 NA 法国 75 75 75 80 NA 德国 52 50r 50 50 NA 日本 40 40 40 40 NA 韩国 41 65 65 65 NA 墨西哥 96e 96e 96e 100e NA 新西兰 40 40 40 40 NA 秘鲁 91 85r 85e 85e 2000 俄罗斯 51e 51e 51e 50e NA 西班牙 50 50 50 50 NA 土耳其 221 100r 100e 100e 44000 美国 768 822 998 1100 250,000 注:r为数据经修订,e为估计值,NA为资料暂无,数据来源USGS。 表 2 硅藻土资源分布概况(据陆浩, 2001)
Table 2. Distribution overview of diatomite resources (after Lu Hao, 2001)
国家和地区 资源分布 北美 美国 美国硅藻土资源广泛分布于东海岸和西海岸的各州,其资源主要是在西部各州集中。加利福尼亚州是硅藻土资源最丰富的地区,拥有全球最大的海相硅藻土矿床(Lompoc硅藻土矿),同时可能还拥有全球最大的商业级淡水硅藻土矿床,此矿床位于沙斯塔郡的Britton湖区 加拿大 有经济意义的硅藻土仅有位于布列颠哥伦比亚洲温哥华北克内尔矿床 墨西哥 藻土资源分布于墨西哥北部,其中质量最优的矿床为Gatarina矿 欧洲 法国 法国是欧洲最主要的硅藻土资源国,主要硅藻土资源分布在南部中央高原地区 德国 主要分布在下萨克森州,集中分布在汉诺威与汉堡之间 意大利 商业性硅藻土矿床主要位于蒙特阿米亚塔附近 西班牙 高质量的硅藻土资源主要分布在东南部的湖相沉积矿床 奥地利 分布有欧洲最大的硅藻土矿床,即Limberg矿床 非洲 南非 主要硅藻土矿床仅分布于Ermelco地区和Prieka地区 东非 主要分布在肯尼亚吉尔吉尔附近,是沉积在东非大裂谷更新代湖泊中 南美 阿根廷、巴西、秘鲁、智利、哥伦比亚 产出零星小矿床 亚洲 日本 主要分布在本洲东北部和中西部地区,包括九洲东部和鹿儿岛,海和湖相矿床均有产出 澳大利亚和新西兰 均有小型硅藻土矿床,其中用作助滤剂级别的硅藻土主要依靠美国进口 表 3 中国主要硅藻土矿床规模与产状特征(据刘振敏, 2018; 潘标开等, 2021)
Table 3. Scale and occurrence characteristics of major diatomite deposits in China (after Liu Zhenmin, 2018; Pan Biaokai et al., 2021)
矿床名称 成矿时代 规模 矿体形态、产状 云南寻甸县先锋矿床 中新世 矿区呈长9.5 km,宽0.5~2 km的形状,矿体厚度在200 m,最厚处达364.73 m,属于大型矿床 层状,倾角10°~35°,埋深400 m 浙江嵊县浦义硅藻土矿 上新世 矿体呈长1900 m,宽500~600 m的形状,厚23.5~36.2 m,属于大型矿床 层状,埋深0~80 m,倾角12°~19° 内蒙古商都县谢家坊硅藻土矿 中新世 矿体规模为中型 层状,产状平缓 山东临朐县解家河硅藻土矿 中新世 8~10层矿,层厚0.5~2 m,长400 m,宽400 m 层状,倾角10°~20° 吉林长白县西大坡硅藻土矿 中新世 矿体2个,厚1~9 m,大型 层状,倾角2°~3° 吉林桦甸硅藻土矿 更新世 厚度不大,为几十厘米至4 m不等 似层状、透镜状 吉林长白县马鞍山硅藻土矿 中新世 矿体延伸500 m,宽约200 m,单层厚大于0.5 m,最厚10.43 m 层状,倾角1°~5° 吉林永吉县三官地硅藻土矿 中新世 矿体长7200 m,宽150~260 m,平均厚7.34 m 扁平状、透镜状 浙江嵊县浦桥硅藻土矿 上新世 矿带延伸10 km,宽2~3 km,厚48~52 m 水平层状 雷州九斗洋矿区 更新世 矿体长2000 m,宽1500 m,厚5.11~42.35 m,矿体连续 水平层状 雷州卜昌矿区 更新世 矿体长宽各200 m左右,厚0.5~4.8 m 水平层状 表 4 中国主要硅藻土矿床成矿时代特征
Table 4. Metallogenic epoch characteristics of main diatomite deposits in China
矿床名称 地质时代 地质事件 沉积环境 气候条件 云南寻甸县先锋矿床 中新世 山间盆地 雷州九斗洋矿区 更新世 断裂构造 负火山口湖盆 温暖湿润 雷州卜昌矿区 更新世 断裂构造 海湾堆积洼地 温暖湿润 吉林长白县马鞍山硅藻土矿 中新世 断裂构造 湖泊盆地的过渡带 良好,阳光充足 吉林长白县西大坡硅藻土矿 中新世 断裂构造 湖泊盆地的过渡带 良好,阳光充足 浙江嵊县浦义硅藻土矿 上新世 火山喷发 火山口湖盆 温暖湿润 表 5 全球硅藻土矿床化学成分(据刘振敏, 2018)
Table 5. Chemical composition of diatomite in the world (after Liu Zhenmin, 2018)
SiO2 Al2O3 Fe2O3 TiO2 CaO MgO Na2O K2O 烧失量 美国加利福尼亚州(Lompx) 89.70 3.72 1.09 0.10 0.30 0.55 0.31 0.41 3.70 日本 86.00 5.80 1.60 0.22 0.70 0.29 0.48 0.53 4.40 肯尼亚(Soysambu) 84.50 3.06 1.86 0.17 1.80 0.39 1.19 0.91 6.08 西班牙(Albacete) 88.60 0.62 0.20 0.05 3.00 0.81 0.50 0.39 5.20 墨西哥(Jalisco) 91.20 3.20 0.70 0.16 0.19 0.42 0.13 0.24 3.60 美国爱达荷州 89.82 1.82 0.44 0.07 1.26 0.54 1.03 0.22 4.02 德国 68.30 1.57 2.37 0.11 0.18 0.84 26.50 美国马里兰州
美国内华达州79.55
86.008.18
5.272.62
2.120.70
0.210.23
0.341.30
0.390.66
0.240.65
0.295.80
4.90云南省寻甸 70.28 13.41 4.96 0.41 1.31 1.17 0.63 0.72 7.03 四川省米易县 71.82 13.24 3.71 0.41 19.10 0.87 0.62 0.57 6.21 浙江省嵊县 71.46 12.81 4.31 0.43 1.27 1.07 0.65 0.78 6.32 吉林省长白县 89.21 3.98 1.06 0.31 0.57 0.36 0.41 0.69 5.92 吉林省临江市 96.43 4.57 1.17 0.31 0.30 0.40 0.57 0.54 5.83 吉林省敦化县 73.36 11.76 3.87 0.51 1.17 1.28 0.73 0.67 7.97 注:单位为%。 表 6 硅藻土矿石类型
Table 6. Diatomite ore types
类型 工业品级 颜色 硅藻壳含量 黏土含量 硅藻土 I级 白色、灰白色、灰绿色 >90% <5% 含黏土
硅藻土II级 灰绿色为主,白色、
灰色为辅>80% <10% 黏土质
硅藻土III级 灰、绿色为主 65%~80% <25% 表 7 硅藻土应用领域及其用途
Table 7. Application fields and uses of diatomite
传统领域 主要且关键用途 废水净化领域 对生活或工业生产所产生的废水中包含的不同污染物,如重金属、放射性元素、磷酸盐、有机染料等等具有有效的净化作用 道路沥青材料 通过硅藻土改性的沥清以提高公路的使用寿命 农业领域 硅藻土在水源保护、农田环境保护、防治病虫害及作物储存等方面有非常广泛的应用前景 建材领域 可以应用到防水、隔热等材料中 新兴领域 主要且关键用途 3D打印技术 主要用于改性聚乳酸(PLA)制备3D打印细丝 新能源领域 用于延长锂电池的寿命 生物医疗领域 在药物控释、组织工程、生物传感器等方面应用广泛 表 8 改性硅藻土对不同重金属的吸附情况(据杨勤桃等, 2022)
Table 8. Adsorption of different heavy metals by modified diatomite (after Yang Qintao et al., 2022)
离子种类 改性方法 吸附条件 平衡吸附量/(mg/g) 文献 pH 温度/℃ 时间/min As(Ⅴ) KMnO4+(NH4)2S2O8 7 25 15 108.2 Du et al., 2014 Hg(Ⅱ) 3-氨基苯硫酚/APTES接枝 4 25 15 242.42 Fu et al., 2019 Zn(Ⅱ) 壳聚糖 6 10 130 127.4 Salih and Ghosh, 2018 Cu(Ⅱ) 微波+超声+酸化 6.5 25 70 57.5 张馨予和彭敬东, 2018 Pb(Ⅱ) 葡萄糖+碳化+KMnO4 2.42 30 50 56.84 Li et al., 2014 Cd(Ⅱ) Mg(OH)2 6 25 120 90.64 李振等, 2018 Cr(Ⅵ) Nb2O5+水热 3 25 30 115 Du et al., 2018 Ni(Ⅱ) 酸化+超声+MgCl2/ FeCl3 7 25 90 166.68 Nefzi et al., 2018 表 9 SBS与活化硅藻土改性沥青路面性能比较(据Du et al., 2022)
Table 9. Performance comparison of SBS and activated diatomite modified asphalt pavement (after Du et al., 2022)
实验项目 SBS 活化硅藻土 孔隙率/% 4.0 3.8 增值税/% 16.5 15.6 稳定性/% 12.5 13.7 流量值/mm 2.6 2.8 动态稳定性/(次/mm) 8770 7193 低温弯曲(µε) 2635 2750 水渗透系数/(mL/min) 68 56 剩余稳定性/% 86.5 90.2 每公里成本/百万 96.5 87.9 表 10 HSC每立方米的混合比例(据Naifah et al., 2021)
Table 10. Mix proportion of HSC per m3 (after Naifah et al., 2021)
混合物 硅藻土/% 配料/kg 水 水泥 硅藻土 沙子 裂石 超塑化剂 DE0 0 184 613 0 924 697 9.2 DE5 5 184 583 31 924 697 9.2 DE10 10 184 552 61 924 697 9.2 DE15 15 184 521 92 924 697 9.2 表 11 NaCl侵蚀下混凝土试样的质量损失(据Naifah et al., 2021)
Table 11. Mass loss of concrete specimens due to NaCl attack (after Naifah et al., 2021)
浸泡时间 混入硅藻土的
混凝土浸泡前平均
质量(gr)浸泡后平均
质量(gr)平均质量
损失/%1个月 0% 335.33 334.77 0.17 5% 341.67 341.13 0.16 10% 337.33 336.80 0.16 15% 334.33 333.97 0.11 2个月 0% 319.33 318.73 0.19 5% 350.67 350.10 0.16 10% 338.00 337.43 0.16 15% 342.00 341.53 0.14 -
[1] Aydar E, Çubukçu H E, Şen E, Akın L. 2012. Central Anatolian Plateau, Turkey: Incisin and paleoaltimetry recorded from volcanic rocks[J]. Turkish Earth Science, 22(5): 739−746.
[2] Baartman J C, Christensen O B. 1975. Contributions to the interpretation of the Fennoscandian Border Zone[J]. Danmarks Geologiske Undersøgelse II. Række, 102: 1–47.
[3] Chen Qilong, Qin Feng, Tang Yinqing, Pang Bin. 2022. Research on water erosion resistance performance of rubber–diatom composite modified asphalt mixture[J]. New Building Materials, 49(2): 66−69 (in Chinese with English abstract).
[4] Cheng Shuai, Jiang Wei, Wang Lin, Huang Xiaoqiao, Han Xiaobin, Liu Zhihang, Lu Zeyu, Yu Jianying. 2022. Effect of diatomite on physical and aging properties of SBS modified asphalt[J]. Highway, 67(7): 353−358 (in Chinese).
[5] Dinesen A, Michelsen O, Lieberkind K. 1977. A Survey of the Paleocene and Eocene Deposits of Jylland and Fyn[M]. Iommission hos CA Reitzels Forlag.
[6] Ding Rui. 2014. Geological characteristics and genesis of Gaosongshu diatomite deposit in Dunhua City[J]. China Non–Metallic Mineral Industry Guide, (4): 41−43 (in Chinese).
[7] Dobrosielska M, Przekop R E, Sztorch B, Brząkalski D, Zgłobicka I, Łępicka M, Dobosz R, Kurzydłowski K J. 2020. Biogenic composite filaments based on polylactide and diatomaceous earth for 3D printing[J]. Materials, 13(20): 4632. doi: 10.3390/ma13204632
[8] Du T, Song P, Liu L P. 2022. Experimental study on activated diatomite modified asphalt pavement in deep loess area[J]. Processes, 10(6): 1227. doi: 10.3390/pr10061227
[9] Du Y C, Wang X K, Wu J S, Qi C, Li Y. 2018. Adsorption and photoreduction of Cr(VI) via diatomite modified by Nb2O5 nanorods[J]. Particuology, 40: 123−130. doi: 10.1016/j.partic.2017.11.005
[10] Erol K, Yildiz E, Alacabey I, Karabörk M, Uzun L. 2019. Magnetic diatomite for pesticide removal from aqueous solution via hydrophobic interactions[J]. Environmental Science and Pollution Research, 26: 33631−33641. doi: 10.1007/s11356-019-06423-0
[11] Feng Huang, Zhang Huifen, Wang Fuya. 1995. Diatoms and their chemical constituents in diatomaceous earth of Leizhou Peninsula[J]. Journal of Mineralogy, (1): 29−35 (in Chinese).
[12] Fu Y, Jiang J W, Chen Z P, Ying S M, Wang J W, Hu J S. 2019. Rapid and selective removal of Hg(II) ions and high catalytic performance of the spent adsorbent based on functionalized mesoporous silica/poly(m–aminothiophenol) nanocomposite[J]. Journal of Molecular Liquids, 286: 110746. doi: 10.1016/j.molliq.2019.04.023
[13] Jiang Yuzhi, Jia Songyang. 2011. Exploitation application existing conditions and evolution of diatiomite[J]. Nonferrous Mining and Metallurgy, 27(5): 31−37 (in Chinese with English abstract).
[14] Kipsanai J J, Wambua P M, Namango S S, Amziane S A. 2022. Review on the incorporation of diatomaceous earth as a geopolymer–based concrete building resource[J]. Materials, 15(20): 7130. doi: 10.3390/ma15207130
[15] Koizumi I, Yamamoto H. 2018. Diatom ooze and diatomite–diatomaceous sediments in and around the North Pacific Ocean[J]. JAMSTEC Report of Research and Development, 27: 26−46. doi: 10.5918/jamstecr.27.26
[16] Li S, Li D Y, Su F, Ren Y P, Qin G W. 2014. Uniform surface modification of diatomaceous earth with amorphous manganese oxide and its adsorption characteristics for lead ions[J]. Applied Surface Science, 317: 724−729. doi: 10.1016/j.apsusc.2014.08.184
[17] Li Z, Zhang N, Sun Y B, Ke H Z, Cheng H S. 2017. Application of diatomite as an effective polysulfides adsorbent for lithium–sulfur batteries[J]. Journal of Energy Chemistry, 26(6): 1267−1275. doi: 10.1016/j.jechem.2017.09.020
[18] Li Zhen, Zhang Haodong, Pu Jinming, Tan Geng, Zhang Mingyue. 2018. Effictiveness of cadmium–contained wastewater treated by Mg(OH)2 modified diatomite[J]. Chemical Research and Application, 30(10): 1621−1628 (in Chinese with English abstract).
[19] Li Zhiwei, Wang Ge, Li Zhongshui, Wang Hong, Guo Xia, Zhao Qi, Nan Yao. 2021. The utilization status of diatomite mines in China and countermeasures for development and utilization[J]. China Non–Metallic Mineral Industry Guide, (3): 1−5 (in Chinese with English abstract).
[20] Li Zhongshui, Liu Xiaolou, Wu Yanling. 2013. New application of diatomite mine in China and resource security countermeasures[J]. China Non–Metal Mining Industry Guide, (5): 1−3,7 (in Chinese with English abstract).
[21] Li Zhongshui. 2018. Geological characteristics and new exploration progress of important non–metallic mineral resources in Jilin Province[J]. China Non–metallic Mineral Industry Guide, (4): 31−34,60 (in Chinese).
[22] Liu Zhenmin. 2018. Characteristics and prospecting direction of diatomite resources in China[J]. Geology of Chemical Mineral, 40(4): 235−240 (in Chinese with English abstract).
[23] Lu Hao. 2001. Diatomite resource and its situation of development and utilization[J]. Geology of Zhejiang, (1): 52−59 (in Chinese with English abstract).
[24] Lü Huafang, Yang Hanbo, Wu Xinyuan, Zhu Xuezhou, Lei Huimin. 2022. Development and application of diatomite filter–soil moisture sensor[J]. Water Resources and Hydropower Engineering, 53(1): 207−218 (in Chinese with English abstract).
[25] Ma J G, Wu J F, Zhang H J, Du L, Zhang H, Zhao W B, Ma B, Chang J, Wu C t. 2022. 3D Printing of diatomite incorporated composite scaffolds for skin repair of deep burn wounds[J]. International Journal of Bioprinting, 8(3): 580. doi: 10.18063/ijb.v8i3.580
[26] Ma Junyu. 2021. Geological features and genesis of the Hudonggou diatomite deposit in Changbai County, Jilin Province[J]. Jilin Geology, 40(2): 18−23,39 (in Chinese with English abstract).
[27] Ma Xiaoshun, Huang Jing, Liu Jianfeng. 2020. Geological characteristics and prospecting criteria of Erdaoyangcha diatomite deposit, Changbai County, Jilin Province[J]. World Nonferrous Metals, (9): 249−250 (in Chinese with English abstract).
[28] Marín–Alzate N, Tobón J I, Bertolotti B, Cáceda M E Q, Flores E. 2021. Evaluation of the properties of diatomaceous earth in relation to their performance in the removal of heavy metals from contaminated effluents[J]. Water Air Soil Pollut, 232: 122. doi: 10.1007/s11270-021-05045-y
[29] Naifah, Hasan M, Saidi T. 2021. The Resistance of High Strength Concrete with Diatomaceous Earth As Cement Replacement to Nacl Attack[C]//Journal of Physics: Conference Series(ed.). IOP Publishing, 1933(1): 012104.
[30] Nefzi H, Abderrabba M, Ayadi S, Labidi J. 2018. Formation of palygorskite clay from treated diatomite and its application for the removal of heavy metals from aqueous solution[J]. Water, 10(9): 1257. doi: 10.3390/w10091257
[31] Pan Biaokai, Ning Siyuan, Gong Shuai, Zhang Dongting, Tian Binsheng. 2021. Geological characteristics and metallogenic regularity of diatomite deposit in Leiqiong Area[J]. China Non–metallic Mineral Industry Guide, (1): 39−42 (in Chinese with English abstract).
[32] Pasquaré G, Poli S, Venzolli L, Zanchi A. 1988. Continental arc volcanism and tectonic setting in Central Anatolia, Turkey[J]. Tectonophysics, 146(1/4): 217−230.
[33] Pedersen G K. 1981. Anoxic events during sedimentation of a Palaeogene diatomite in Denmark[J]. Sedimentology, 28(4): 487−504. doi: 10.1111/j.1365-3091.1981.tb01697.x
[34] Qu Rongying, Chen Shui’an. 2005. Geological factors of ore–controlling and metallogenic laws for diatomaceous earth ore deposit in Leizhou Peninsula[J]. West–China Exploration Engineering, 17(4): 91−92 (in Chinese with English abstract).
[35] Salih S S, Ghosh T K. 2018. Adsorption of Zn (II) ions by chitosan coated diatomaceous earth[J]. International Journal of Biological Macromolecules, 106: 602−610. doi: 10.1016/j.ijbiomac.2017.08.053
[36] Smirnov P V, Konstantinov A O, Gursky H J. 2017. Petrology and industrial application of main diatomite deposits in the Transuralian region (Russian Federation)[J]. Environmental Earth Sciences, 76(20): 682. doi: 10.1007/s12665-017-7037-3
[37] Taliaferro N L. 1933. Relation of volcanism to diatomaceous and associated siliceous sediments[J]. University of California Publication Geological Science, 23: 1−55.
[38] Uthappa U T, Sriram G, Brahmkhatri V, Kigga M, Jung H Y, Altalhi T, Neelgund G, Kurkuri M. 2018. Xerogel modified diatomaceous earth microparticles for controlled drug release studies[J]. New Journal of Chemistry, 42(14): 11964−11971. doi: 10.1039/C8NJ01238E
[39] Wang Chunlian, Wang Jiuyi, You Chao, Yu Xiaocan, Liu Dianhe, Yan Kai, Liu Sihan, Xue Yan, Liu Yanting, Liu Xue, Yin Chuankai. 2022. A study on strategic non–metallic mineral definition, key applications, and supply and demand situation[J]. Acta Geoscientica Sinica, 43(3): 267−278 (in Chinese with English abstract).
[40] Wang Denghong, Jiang Chengxing, Ying Hanlong, Chen Congxi, Li Zhiwei. 2002. Geochemistry of diatomite in Guanyinmiao and its genetic relation to volcanism in Tengchong, Yunnan[J]. Mineral Deposit Geology, 21(S1): 917−920.
[41] Wang Jian, Chen Shaoheng, Pang Xiandi. 2022. Distribution characteristics and exploitation status of diatomite mineral resources in Jilin Province[J]. China Non–metallic Mineral Industry Guide, (1): 7−9,17 (in Chinese with English abstract).
[42] Wang Jimei. 2014. Geological characteristics and genesis of diatomite deposit in Beigang, Changbai County[J]. China Non–Metallic Mineral Industry Guide, (5): 38−41 (in Chinese).
[43] Wang Lei, Ren Peng. 2013. Discussion on geological characteristics and genesis of Nangang diatomite deposit in Linjiang City, Jilin Province[J]. Western Exploration Engineering, 25(10): 122−128 (in Chinese).
[44] Wang Tao, Liu Yanhai, Xue Shubin. 2020. Geological characteristics and metallogenic analysis of diatomite deposits in southeast part of the Changzhi Basin[J]. Science Technology and Engineering, 20(9): 3441−3447 (in Chinese with English abstract).
[45] Wang X Y, Li Y F, Ren W J, Huo R X, Liu H F, Li R, Du S J, Wang L, Liu J Y. 2021. PEI–modified diatomite/chitosan composites as bone tissue engineering scaffold for sustained release of BMP–2[J]. Journal of Biomaterials Science, Polymer Edition, 32(10): 1337–1355.
[46] Wu Zhaoyang, Zhang Yongxing, Zhang Lizhen, Tan Xiumin. 2019. Characteristics of diatomite resources and its application in strategic emerging industries[J]. Conservation and Utilization of Mineral Resources, 39(6): 134−141 (in Chinese with English abstract).
[47] Xiao Liguang, Zhao Zhuang, Yu Wanzeng. 2010. The development status and prospects of diatomite[J]. Journal of Jilin Institute of Architecture & Civil Engineering, 27(2): 26−30 (in Chinese with English abstract).
[48] Xu Jianjun, Zhang Chuanshun, Guan Jinan. 2011. Application and research progress of diatomite[J]. Guangxi Journal of Light Industry, (5): 23−24 (in Chinese).
[49] Yang Huaze, Luo Huiping, Luo Xicheng, Li Zimin, Kuang Yuanzhong. 2017. Geological features and genesis of the diatomite ore deposit in Toupi of Guangchang County, Jiangxi Province[J]. Journal of Geological, 41(4): 573−581 (in Chinese with English abstract).
[50] Yang Qintao, Nong Jieliang, Xie Qinglin, Chen Nanchun. 2022. Research progress on the application of modified diatomite in wastewater treatment[J]. New Chemical Materials, 50(1): 298−302 (in Chinese with English abstract).
[51] Zhang Haojing, Liu Xiaojing, Zhao Mingjie, Li Yongtian. 2020. Application of magnesium hydroxide modified diatomite in phosphorous wastewater treatment[J]. Resource Conservation and Environmental Protection, (9): 97−98 (in Chinese).
[52] Zhang Xinyu, Peng Jingdong. 2018. On adsorption of Pb2+, Cu2+, Cd2+ ions by modified diatomite[J]. Journal of Southwest China Normal University (Natural Science Edition), 43(9): 90−94 (in Chinese with English abstract).
[53] Zhang Zhiwei, Zheng Liguo. 2017. Diatomite deposit characteristics and prospecting direction in Changbai, Jilin[J]. Western Exploration Engineering, 29(2): 89−91 (in Chinese).
[54] Zheng Liduan. 2020. Late Neogene Environmental Changes and Ecological Responses Recorded by Geological Lipids in the Lake and Swamp Facies of the Zhaotong Basin, Yunnan Province[D]. Wuhan: China University of Geosciences, 1–150 (in Chinese).
[55] Zhou F, Li Z, Lu Y Y, Shen B, Guan Y, Wang X X, Yin Y C, Zhu B S, Lu L L, Ni Y, Cui Y, Yao H B, Yu S H. 2019. Diatomite derived hierarchical hybrid anode for high performance all–solid–state lithium metal batteries[J]. Nature Communications, 10(1): 2482. doi: 10.1038/s41467-019-10473-w
[56] Zhou Kaican. 1988. Geological characteristics of diatomite deposits in my country[J]. Building Materials Geology, (2): 28−33,50 (in Chinese).
[57] Zhou Tingting, Wu Zhaowei. 2017. The status and development of diatomite utilization in China[J]. Conservation and Utilization of Mineral Resources, (4): 87−92 (in Chinese with English abstract).
[58] Zhou Yongqing. 1990. Geological features and exploitation prospect of the diatomite deposits in Leizhou peninsula[J]. Guangdong Geology, 5(2): 22−27 (in Chinese with English abstract).
[59] Ziegler W H. 1975. Outline of the geological history of the North Sea[J]. Applied Science Publishers, 1: 165−187.
[60] 陈其龙, 覃峰, 唐银青, 庞彬. 2022. 橡胶–硅藻土复合改性沥青混合料抗水侵蚀性能研究[J]. 新型建筑材料, 49(2): 66−69. doi: 10.3969/j.issn.1001-702X.2022.02.016
[61] 程帅, 姜蔚, 汪林, 黄小侨, 韩晓斌, 刘志航, 卢泽宇, 余剑英. 2022. 硅藻土对SBS改性沥青物理和老化性能的影响[J]. 公路, 67(7): 353−358.
[62] 丁瑞. 2014. 敦化市高松树硅藻土矿床地质特征及成因[J]. 中国非金属矿工业导刊, (4): 41−43. doi: 10.3969/j.issn.1007-9386.2014.04.013
[63] 冯璜, 张惠芬, 王辅亚. 1995. 雷州半岛硅藻土中的硅藻及其化学成分[J]. 矿物学报, (1): 29−35. doi: 10.3321/j.issn:1000-4734.1995.01.006
[64] 姜玉芝, 贾嵩阳. 2011. 硅藻土的国内外开发应用现状及进展[J]. 有色矿冶, 27(5): 31−37. doi: 10.3969/j.issn.1007-967X.2011.05.012
[65] 李振, 张皓东, 卜鸡明, 谭耿, 张明月. 2018. 氢氧化镁改性硅藻土处理含镉废水的研究[J]. 化学研究与应用, 30(10): 1621−1628. doi: 10.3969/j.issn.1004-1656.2018.10.007
[66] 李志威, 王鸽, 李忠水, 王宏, 郭霞, 赵琪, 南瑶. 2021. 我国硅藻土矿利用现状及开发利用对策[J]. 中国非金属矿工业导刊, (3): 1−5.
[67] 李忠水, 刘小楼, 吴彦岭. 2013. 我国硅藻土矿新应用及资源保障对策[J]. 中国非金属矿工业导刊, (5): 1−3,7. doi: 10.3969/j.issn.1007-9386.2013.05.001
[68] 李忠水. 2018. 吉林省重要非金属矿产资源地质特征及勘查新进展[J]. 中国非金属矿工业导刊, (4): 31−34,60. doi: 10.3969/j.issn.1007-9386.2018.04.011
[69] 刘振敏. 2018. 中国硅藻土矿资源特征及找矿方向[J]. 化工矿产地质, 40(4): 235−240. doi: 10.3969/j.issn.1006-5296.2018.04.008
[70] 陆浩. 2001. 硅藻土资源及开发利用概况[J]. 浙江地质, (1): 52−59.
[71] 吕华芳, 杨汉波, 伍鑫源, 朱学舟, 雷慧闽. 2022. “硅藻土–过滤器”型土壤墒情传感器研制及应用[J]. 水利水电技术(中英文), 53(1): 207−218.
[72] 马骏雨. 2021. 吉林省长白县虎洞沟硅藻土矿床地质特征及成因浅析[J]. 吉林地质, 40(2): 18−23,39. doi: 10.3969/j.issn.1001-2427.2021.02.004
[73] 马小顺, 黄静, 刘健峰. 2020. 吉林省长白县二道阳岔硅藻土矿矿床地质特征和找矿标志[J]. 世界有色金属, (5): 249−250. doi: 10.3969/j.issn.1002-5065.2020.05.149
[74] 潘标开, 宁思远, 弓帅, 张东婷, 田斌升. 2021. 雷琼地区硅藻土矿床地质特征与成矿规律[J]. 中国非金属矿工业导刊, (1): 39−42.
[75] 屈荣英, 陈水安. 2005. 雷州半岛硅藻土矿床控矿地质因素及成矿规律[J]. 西部探矿工程, 17(4): 91−92. doi: 10.3969/j.issn.1004-5716.2005.04.048
[76] 王春连, 王九一, 游超, 余小灿, 刘殿鹤, 颜开, 刘思晗, 薛燕, 刘延亭, 刘雪, 尹传凯. 2022. 战略性非金属矿产厘定、关键应用和供需形势研究[J]. 地球学报, 43(3): 267−278. doi: 10.3975/cagsb.2022.052701
[77] 王登红, 蒋成兴, 应汉龙, 陈从喜, 李志伟. 2002. 云南腾冲观音庙硅藻土矿床的地球化学特征及其与火山作用的成因联系[J]. 矿床地质, 21(S1): 917−920.
[78] 王健, 程绍恒, 庞仙笛. 2022. 吉林硅藻土矿产资源分布特征及开发现状[J]. 中国非金属矿工业导刊, (1): 7−9,17. doi: 10.3969/j.issn.1007-9386.2022.01.002
[79] 王继梅. 2014. 长白县北岗参场硅藻土矿床地质特征及成因浅析[J]. 中国非金属矿工业导刊, (5): 38−41. doi: 10.3969/j.issn.1007-9386.2014.05.013
[80] 王磊, 任鹏. 2013. 吉林省临江市南岗硅藻土矿床地质特征及成因探讨[J]. 西部探矿工程, 25(10): 122−128. doi: 10.3969/j.issn.1004-5716.2013.10.041
[81] 王涛, 刘燕海, 薛曙斌. 2020. 长治盆地东南部硅藻土矿床地质特征及成矿分析[J]. 科学技术与工程, 20(9): 3441−3447. doi: 10.3969/j.issn.1671-1815.2020.09.011
[82] 吴照洋, 张永兴, 张利珍, 谭秀民. 2019. 硅藻土资源特点及在战略新兴产业中的应用[J]. 矿产保护与利用, 39(6): 134−141.
[83] 肖力光, 赵壮, 余万增. 2010. 硅藻土国内外发展现状及展望[J]. 吉林建筑工程学院学报, 27(2): 26−30.
[84] 徐建军, 张传顺, 管继南. 2011. 硅藻土的应用及研究进展[J]. 广西轻工业, (5): 23−24. doi: 10.3969/j.issn.1003-2673.2011.05.011
[85] 杨华泽, 罗辉平, 罗喜成, 李自敏, 况沅忠. 2017. 江西广昌头陂硅藻土矿床地质特征及成因[J]. 地质学刊, 41(4): 573−581. doi: 10.3969/j.issn.1674-3636.2017.04.008
[86] 杨勤桃, 农接亮, 解庆林, 陈南春. 2022. 改性硅藻土在污水处理中的应用研究进展[J]. 化工新型材料, 50(1): 298−302.
[87] 张颢竞, 刘晓静, 赵明杰, 栗勇田. 2020. 氢氧化镁改性硅藻土在含磷污水处理中的应用[J]. 资源节约与环保, (9): 97−98. doi: 10.3969/j.issn.1673-2251.2020.09.058
[88] 张馨予, 彭敬东. 2018. “微超酸”改性硅藻土对Pb2+, Cu2+, Cd2+的吸附性能研究[J]. 西南师范大学学报(自然科学版), 43(9): 90−94.
[89] 张致伟, 郑立国. 2017. 吉林长白地区硅藻土矿床特征及找矿方向[J]. 西部探矿工程, 29(2): 89−91. doi: 10.3969/j.issn.1004-5716.2017.02.027
[90] 郑丽端. 2020. 云南昭通盆地湖沼相地质脂类记录的晚新近纪环境变化与生态响应[D]. 武汉: 中国地质大学, 1–150.
[91] 周开灿. 1988. 我国硅藻土矿地质特征[J]. 建材地质, (2): 28−33,50.
[92] 周婷婷, 吴肇伟. 2017. 我国硅藻土加工利用现状与研究进展[J]. 矿产保护与利用, (4): 87−92.
[93] 周永清. 1990. 雷州半岛硅藻土矿床地质特征和开发前景[J]. 广东地质, 5(2): 22−27.
-