Characteristics of clay minerals in oasis farmland soil and their effects on adsorption of soil nutrients and heavy metal: A case study of the oasis area in the Kaikong river basin, Xinjiang
-
摘要:
研究目的 黏土矿物对土壤质量起重要调控作用,查明干旱绿洲区农田土壤黏土矿物特征,对绿洲区土壤质量调控及农业发展具有重要意义。
研究方法 以新疆巴音郭楞州开都河—孔雀河流域干旱绿洲区农田土壤为研究对象,通过 X−射线衍射图谱分析、相关性分析、三角图及风化指数分析等方法对该区黏土矿物组成特征与物源演化、成土气候条件及其对土壤质量的影响进行探究。
研究结果 研究区黏土矿物类型主要为2∶1型伊利石、伊/蒙混层矿物和绿泥石,含少量的高岭石,黏土矿物的物源为花岗岩,演变规律为伊利石→伊/蒙混层矿物→绿泥石、高岭石;研究区伊利石结晶度IC值为0.35~0.62,均值0.44,化学蚀变指数CIA值为51.29%~62.57%,均值为58.24%,成分变异指数ICV值为1.09~3.69,均值2.65,上述指标反映该区低温、干旱及风化作用程度较弱的成土期环境;研究区土壤黏土矿物总量与土壤养分、重金属元素呈现正相关关系。
结论 开都河—孔雀河流域绿洲区黏土矿物组合类型为伊利石−伊/蒙混层矿物−绿泥石型;绿洲区农田土壤黏土矿物能够通过吸附作用提升土壤养分元素水平、固定土壤重金属降低其农业风险,从而提高土壤质量。
Abstract:This paper is the result of environmental geological survey engineering.
Objective Clay minerals play a crucial role in soil quality regulation. Identifying the clay mineral characteristics of farmland soil in arid oasis areas is of great significance to soil quality control and agricultural development.
Methods This study focused on the farmland soil in the arid oasis area of the Kaidu−Kongque River Basin, Bayingolin Mongolian Autonomous Prefecture, Xinjiang, and explored the characteristics of clay minerals composition, provenance evolution, soil−forming climatic conditions and their influence on soil quality through systematic analysis methods including X−ray diffraction pattern analysis, correlation analysis, triangular diagram analysis and weathering index analysis.
Results The dominant clay mineral types in the study area are 2:1 illite, illite/smectite mixed−layer minerals, and chlorite, with a minor presence of kaolinite. The evolution sequence of the clay minerals, which originate from granite, is illite→illite/smectite mixed−layer mineral→chlorite and kaolinite. The illite crystallinity (IC value) ranges from 0.35 to 0.62, with an average of 0.44. The chemical alteration index (CIA value) ranges from 51.29% to 62.57%, averaging 58.24%. The compositional variation index (ICV value) ranges from 1.09 to 3.69, averaging 2.65. These indicators suggest a pedogenesis environment with low temperatures, aridity, and relatively weak weathering intensity. The total clay mineral content in the study area shows a positive correlation with soil nutrients and heavy metal elements.
Conclusions The clay minerals assemblage in the oasis area of the Kaidu−Kongque River Basin is of the illite−illite/smectite mixed−layer mineral−chlorite type. Clay minerals play a significant role in enhancing soil nutrient levels and immobilizing heavy metal elements through adsorption, thereby improving soil quality.
-
-
表 1 元素测试方法及检出限
Table 1. Element testing methods and detection limits
元素指标 单位 技术方法 规范规定检出限DL* 测试检出限 N mg/kg 凯氏法 20 19.580 SOM % 容量法 0.1 0.063 AK mg/kg ICP−AES 1.25 1.00 AP mg/kg ICP−AES 0.25 0.20 Cu mg/kg ICP−OES 1 0.952 Pb mg/kg ICP−OES 2 0.650 Ni mg/kg ICP−OES 2 0.744 Zn mg/kg ICP−OES 4 0.644 As mg/kg AFS 1 0.112 Cd mg/kg ICP−OES 0.03 0.002 pH 无量纲 电位法 0.10** 0.03 SiO2 % XRF 0.1 0.05 K2O % XRF 0.05 0.0008 Fe2O3 % XRF 0.05 0.03 CaO % XRF 0.05 0.03 MgO % XRF 0.05 0.03 Al2O3 % XRF 0.05 0.03 MnO % XRF 0.1 0.05 P2O5 % XRF 0.1 0.05 TiO2 % XRF 0.1 0.05 注:*《多目标区域地球化学调查规范》(DZ/T 0258—2014);**为无量纲。 表 2 标准物质分析单次测定控制限
Table 2. Single determination control limit for standard substance analysis
含量范围 准确度 精密度 ΔlgC(GBW)= |lgCi−lgCs| $ \lambda =\sqrt{\dfrac{{\displaystyle \sum _{i=1}^{\text{n}}(\mathrm{lg}{C}_{i}-\mathrm{lg}{C}_{s}{)}^{2}}}{4-1}} $ 检出限三倍以内 ≤0.12 0.17 检出限三倍以上 ≤0.10 0.15 1%~5% ≤0.07 0.10 >5% ≤0.05 0.08 注:Ci为每个GWB标准物质12次实测值的平均值;Cs为GWB标准物质的标准值。 表 3 研究区土壤元素含量
Table 3. Soil element content in the study area
元素 样本数/个 均值 新疆土壤背景值 全国土壤背景值 富集系数K1 富集系数K2 N 85 947 680 1117 1.39 0.85 AP 85 19.6 17.9 27.4 1.09 0.72 AK 85 170.4 170.6 127.0 1.00 1.34 SOM 85 1.75 1.46 2.46 1.20 0.71 Ni 49 22.7 24.8 26.0 0.91 0.87 Cu 85 22.71 23.7 23.0 0.96 0.99 Pb 85 19.0 19.3 25.0 0.98 0.76 Zn 85 68.8 68.0 67.0 1.01 1.03 As 35 10.51 10.9 9.1 0.96 1.15 Cd 35 0.17 0.16 0.15 1.06 1.13 注:全国土壤基准值、新疆背景值引自《中国土壤地球化学参数》(侯青叶等,2020)。SOM单位为%,其他为mg/kg;K1=均值/新疆土壤背景值,K2=均值/全国土壤背景值。 表 4 土壤主要氧化物含量(%)及化学参数
Table 4. Soil main oxide content (%) and chemical parameters
SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O P2O5 MnO TiO2 pH Sa CIA ICV 样本数 85 85 85 85 85 85 85 85 85 85 85 85 85 85 最大值 64.5 14.66 5.99 17.43 7.46 3.35 2.75 0.64 0.1 0.73 9.19 9.7 62.57 3.69 最小值 38.78 7.96 2.46 6.18 1.54 1.70 1.17 0.088 0.052 0.35 8 5.44 51.29 1.09 均值 51.61 10.91 3.81 11.13 4.24 2.31 1.74 0.19 0.074 0.48 8.56 7.98 57.11 1.88 标准差 5.55 1.14 0.61 2.22 1.41 0.24 0.31 0.072 0.0078 0.056 0.29 0.89 2.23 0.47 变异系数 0.11 0.10 0.16 0.20 0.33 0.10 0.18 0.18 0.11 0.12 0.034 0.11 0.039 0.25 注:Sa=(SiO2/Al2O3); CIA=([Al2O3/ (Al2O3+CaO* +Na2O+K2O)] ×100); ICV=((Fe2O3 +MgO+CaO*+Na2O+K2O+MnO+TiO2) / Al2O3), CaO*为硅酸盐中CaO的摩尔含量。 表 5 研究区土壤黏土矿物含量(%)
Table 5. Soil clay mineral content in the study area (%)
样本数/个 黏土矿物
总量伊利石 伊/蒙混层
矿物绿泥石 高岭石 最大值 85 30.1 62 63 21 9 最小值 5.2 23 15 7 3 均值 17.2 36.8 45.1 12.8 5.5 标准差 4.84 7.33 8.05 1.41 1.41 变异系数 0.28 0.20 0.18 0.11 0.26 注:黏土矿物总量为黏土矿物在土壤中的百分比,各类型黏土矿物含量为各自在黏土矿物总量中的百分比。 表 6 黏土矿物相关性分析
Table 6. Correlation analysis of clay minerals
伊利石 伊/蒙混层矿物 绿泥石 高岭石 样本数 伊利石 1 85 伊/蒙混层矿物 −0.904** 1 绿泥石 −0.007 −0.296** 1 高岭石 −0.014 −0.385** 0.461** 1 注:**表示 0. 01 水平下相关性显著。 表 7 黏土矿物与土壤元素的相关性分析
Table 7. Correlation analysis of clay minerals with soil elements
元素分类 元素 黏土矿物总量 伊利石 伊/蒙混层矿物 高岭石 绿泥石 养分元素 N 0.530** −0.418 0.483** −0.152 −0.258 AP 0.215* −0.027 0.055 −0.189 −0.028 AK 0.355** −0.314 0.393** −0.088 −0.293 SOM 0.424** −0.403 0.481** −0.077 −0.320 重金属元素 Ni 0.664** −0.343 0.288* 0.246 0.031 Cu 0.765** −0.191 0.173 −0.122 0.032 Pb 0.501** −0.081 0.060 −0.180 0.144 As 0.491** −0.016 −0.158 −0.146 0.246 Cd 0.501** −0.081 0.092 0.055 −0.089 Zn 0.666** −0.169 0.193 −0.146 −0.077 注:**和*分别表示0.01水平和0.05水平下显著。 -
[1] Bergaya F, Lagaly G. 2006. General introduction: Clays, clay minerals, and clay science[J]. Developments in Clay Science, 1: 1−18.
[2] Biscaye P E. 1965. Mineralogy and sedimentation of recent deep−sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. Geological Society of America Bulletin, 76(7): 803−832. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
[3] Cai Jingong, Lu Longfei, Ding Fei, Fan Fu. 2009. Significance of interaction between soluble organic matter and clay minerals in muddy source rocks[J]. Journal of Tongji University (Natural Science), 37(12): 1679−1684 (in Chinese with English abstract).
[4] Chen Tao, Wang Huan, Zhang Zuqing, Wang Hemian. 2003. Clay minerals as indicators of paleoclimate[J]. Acta Petrologica et Mineralogica, 22(4): 416−420 (in Chinese with English abstract).
[5] Celis R, Hermosin M C, Cornejo J. 2000. Heavy metal adsorption by functionalized clays[J]. Environmental Science & Technology, 34(21): 4593−4599.
[6] Cox R, Lowe D R, Cullers R L. 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 59(14): 2919−2940. doi: 10.1016/0016-7037(95)00185-9
[7] Crow S E, Swanston C W, Lajtha K, Brooks J R, Keirstead H. 2007. Density fractionation of forest soils: Methodological questions and interpretation of incubation results and turnover time in an ecosystem context[J]. Biogeochemistry, 85: 69−90.
[8] Collins C R, Ragnarsdottir K V, Sherman D M. 1999. Effect of inorganic and organic ligands on the mechanism of cadmium sorption to goethite[J]. Geochimica et Cosmochimica Acta, 63: 2989−3002. doi: 10.1016/S0016-7037(99)00226-4
[9] Dai Shugui, Liu Guangliang, Qian Yun, Sun Yubao. 2001. Development of research on soil multimedia environmental pollution[J]. Soil and Environmental Sciences, 10(1): 1−5 (in Chinese with English abstract).
[10] Deconinck J F, Blanc−Valleron M, Rouchy J, Camoin G, Badaut−Trauth D. 2000. Palaeoenvironmental and diagenetic control of the mineralogy of Upper Cretaceous–Lower Tertiary deposits of the Central Palaeo–Andean basin of Bolivia (Potosi area)[J]. Sedimentary Geology, 132(3): 263−278.
[11] Du Q, Sun Z, Forsling W. 1997. Surface complexation in natural particle suspensions[J]. International Poster Journal of Science & Technology, 2(2): 70−82.
[12] Du Huihui. 2017. Molecular Binding Mechanisms of Cadmium and Lead at the Mineral−organic Interface[D]. Wuhan: Huazhong Agricultural University, 1−125 (in Chinese with English abstract).
[13] Eloussaief M, Hamza W, Kallel N, Benzina M. 2013. Wastewaters decontamination: Mechanisms of Pb(II), Zn(II), and Cd(II) competitive adsorption on tunisian smectite in single and multi−solute systems[J]. Environmental Progress & Sustainable Energy, 32(2): 229−229.
[14] Fedo C M, Wayne Nesbitt H, Young G M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 23(10): 921−924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
[15] Gier S, Johns W D. 2000. Heavy metal−adsorption on micas and clay minerals studied by X−ray photoelectron spectroscopy[J]. Applied Clay Science, 16(5/6): 289−299.
[16] Gupta S S, Bhattacharyya K G. 2008. Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium[J]. Journal of Environmental Management, 87(1): 46−58. doi: 10.1016/j.jenvman.2007.01.048
[17] Hou Qinye, Yang Zhongfang, Yu Tao, Xia Xueqi, Cheng Hangxin, Zhou Guohua. 2020. Soil Geochemical Elements Parameters in China[M]. Beijing: Geological Publishing House, 75−135(in Chinese with English abstract).
[18] Hang Xiaoshuai, Zhou Jianmin, Wang Huoyan, Shen Peiyou. 2007. Remediation of heavy metal contaminated soils using clay minerals[J]. Chinese Journal of Environmental Engineering, 1(9): 113−120 (in Chinese with English abstract).
[19] He Hongping, Guo Longgao, Xie Xiande, Peng Jinlian. 1999. Experimental studies on the selective adsorption of Cu2+, Pb2+, Zn2+, Cd2+, Cr3+ ions on montmorillonite, illite and kaolinite and the influence of medium conditions[J]. Acta Mineralogica Sinica, 19(2): 231−235 (in Chinese with English abstract).
[20] Keller W. 1970. Environmental aspects of clay minerals[J]. Journal of Sedimentary Research, 40(3): 788−813.
[21] Kubler B. 1964. Les argiles, indicateurs de métamorphisme[J]. Revue de l'Institut Franç ais du Pétrol, 19: 1093−1112.
[22] Li Xulong, Zhang Xia, Lin Chunming, Huang Shuya, Li Xin. 2022. Overview of the application and prospect of common chemical weathering indices[J]. Geological Journal of China Universities, 28(1): 51 (in Chinese with English abstract).
[23] Liang Chenghua, Wei Liping, Luo Lei. 2002. Advance in research on mechanisms of potassium releasing and fixing in soils[J]. Advance in Earth Sciences, 17(5): 679 (in Chinese with English abstract).
[24] Lin Z, Puls R W. 2000. Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process[J]. Environmental Geology, 39: 753−759.
[25] Liu Dongsheng. 2002. Loess and environment[J]. Journal of Xi'an Jiaotong University (Social Sciences), 22(4): 7−12 (in Chinese with English abstract).
[26] Long Hao, Wang Chenhua, Liu Yongping, Ma Haizhou. 2007. Application of clay minerals in paleoenvironment research[J]. Journal of Salt Lake Research, 15(2): 21−25 (in Chinese with English abstract).
[27] Lu Chunxia. 1997. Clay minerals as indicators of paleoenvironment[J]. Journal of Desert Reserch, 17(4): 456−460 (in Chinese with English abstract).
[28] Manning B A, Goldberg S. 1996. Modeling arsenate competitive adsorption on kaolinite, montmorillonite and illite[J]. Clays and Clay Minerals, 44: 609−623. doi: 10.1346/CCMN.1996.0440504
[29] Mortland M. 1970. Clay−organic complexes and interactions[J]. Advances in Agronomy, 22: 75−117.
[30] Niu Fangpeng, Li Xinguo, Jin Wangui. 2020. Characteristics of soil salinity in the western lakeside oasis of Bosten Lake[J]. Soil and Fertilizer Sciences in China, (3): 8−15 (in Chinese with English abstract).
[31] Ren Juan. 2021. Coupling Response of Iron Oxide Phase Differentiation and Phosphorus in Soils with Multi−environmental Gradients[D]. Chongqing: Southwest University, 1−136 (in Chinese with English abstract).
[32] Shahmohammadi−Kalalagh S, Babazadeh H, Nazemi A H, Manshouri M. 2010. Isotherm and kinetic studies on adsorption of Pb, Zn and Cu by kaolinite[J]. Caspian Journal of Environmental Sciences, 9: 243−255.
[33] Shi Huanzhi, Li Fuchun, Li Xuhui, Wu Feng, Luo Xupeng, Li Xuelin, Jin Zhangdong. 2011. Distribution of organic carbon in the Luochuan loess/paleosol and its relationship with clay minerals[J]. China Geology, 38(5): 1355−1362 (in Chinese with English abstract).
[34] Schulten H R, Schnitzer M. 1997. The chemistry of soil organic nitrogen: A review[J]. Biology and Fertility of Soils, 26: 1−15. doi: 10.1007/s003740050335
[35] Singer A. 1984. The paleoclimatic interpretation of clay minerals in sediments—a review[J]. Earth−Science Reviews, 21(4): 251−293. doi: 10.1016/0012-8252(84)90055-2
[36] Tang Yanjie, Jia Jianye, Xie Xiande. 2002. Environment significance of clay minerals[J]. Earth Science Frontiers, 9(2): 337−344 (in Chinese with English abstract).
[37] Thiry M. 2000. Palaeoclimatic interpretation of clay minerals in marine deposits: An outlook from the continental origin[J]. Earth−Science Reviews, 49(1): 201−221.
[38] Tan X, Hu J, Montavon G, Wang X. 2011. Sorption speciation of nickel(II) onto Ca−montmorillonite: Batch, EXAFS techniques and modeling[J]. Dalton Transactions. 40: 10953−10960.
[39] Uddin F. 2018. Montmorillonite: An Introduction to Properties and Utilization[M]. London, UK: Intech Open, 81−87.
[40] Uddin M K. 2017. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade[J]. Chemical Engineering Journal, 308: 438−462. doi: 10.1016/j.cej.2016.09.029
[41] Velde B B, Meunier A. 2008. The Origin of Clay Minerals in Soils and Weathered Rocks[M]. Dordrecht, Netherlands: Springer Science & Business Media, 105−120.
[42] Wang Jingguo. 2017. Biogeochemistry: Matter Cycles and Soil Processes[M]. Beijing: China Agricultural University Press, 82−92 (in Chinese with English abstract).
[43] Wefer G, Berger W H, Siedler G, Diekmann B, Petsehick R. 1996. Clay mineral fluctuations in Late Quaternary sediments of the southeastern South Atlantic: Implications for past changes of deep water advection[J]. The South Atlantic: Present and Past Circulation, 621−644.
[44] Yang Shengu. 2004. Three unit clay mineral analytical method and its application[J]. Journal of Jianghan Petroleum Institute, 26(2): 26−28 (in Chinese with English abstract).
[45] Zhao Liwen, Ji Xibin. 2010. Quantification of transpiration and evaporation over agricultural field using the FAO−56 dual crop coefficient approach−a case study of the maize field in an oasis in the middlestream of the Heihe River Basin in Northwest China[J]. Scientia Agricultura Sinica, 43(19): 4016−4026 (in Chinese with English abstract).
[46] Zhao Yu, Zhao Hansen, Liu Tuo, Bai Jin, Wang Lei, Liang Nan, Wang Peng, Yang Shengfei, Wei Jinping, Li Wengming, Zeng Xianhong, Zhang Zhuan, Han Haihui, Zhao Jun, Chen Zhenyu. 2022. Progresses and main achievements of geochemical survey of land quality in Northwest China[J]. Northwestern Geology, 55(3): 140−154 (in Chinese with English abstract).
[47] Zheng Qingfu, Liu Ting, Zhao Lanpo, Feng Jun, Wang Hongbin, Li Chunlin. 2010. Spatial variation and evolution mechanism of clay minerals composition in agric horizon of black soil in Northeast China[J]. Acta Pedologica Sinica, 47(4): 734−746 (in Chinese with English abstract).
[48] 蔡进功, 卢龙飞, 丁飞, 樊馥. 2009. 烃源岩中黏土与可溶有机质相互作用研究展望[J]. 同济大学学报(自然科学版), 37(12): 1679−1684.
[49] 陈涛, 王欢, 张祖青, 王河锦. 2003. 粘土矿物对古气候指示作用浅析[J]. 岩石矿物学杂志, 22(4): 416−420. doi: 10.3969/j.issn.1000-6524.2003.04.022
[50] 戴树桂, 刘广良, 钱芸, 孙玉宝. 2001. 土壤多介质环境污染研究进展[J]. 土壤与环境, 10(1): 1−5.
[51] 杜辉辉. 2017. Cd(II)、Pb(II)在土壤矿物−有机互作界面的分子结合机制[D]. 武汉: 华中农业大学, 1−125.
[52] 侯青叶, 杨忠芳, 余涛, 夏学齐, 成杭新, 周国华. 2020. 中国土壤地球化学参数[M]. 北京: 地质出版社, 75−135.
[53] 杭小帅, 周健民, 王火焰, 沈培友. 2007. 粘土矿物修复重金属污染土壤[J]. 环境工程学报, 1(9): 113−120. doi: 10.3969/j.issn.1673-9108.2007.09.025
[54] 何宏平, 郭龙皋, 谢先德, 彭金莲. 1999. 蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究[J]. 矿物学报, 19(2): 231−235. doi: 10.3321/j.issn:1000-4734.1999.02.016
[55] 李绪龙, 张霞, 林春明, 李鑫. 2022. 常用化学风化指标综述: 应用与展望[J]. 高校地质学报, 28(1): 51.
[56] 梁成华, 魏丽萍, 罗磊. 2002. 土壤固钾与释钾机制研究进展[J]. 地球科学进展, 17(5): 679. doi: 10.3321/j.issn:1001-8166.2002.05.008
[57] 刘东生. 2002. 黄土与环境[J]. 西安交通大学学报(社会科学版), 22(4):7−12.
[58] 隆浩, 王晨华, 刘勇平, 马海洲. 2007. 粘土矿物在过去环境变化研究中的应用[J]. 盐湖研究, 15(2): 21−25.
[59] 鲁春霞. 1997. 粘土矿物在古环境研究中的指示作用[J]. 中国沙漠, 17(4): 456−460. doi: 10.3321/j.issn:1000-694X.1997.04.004
[60] 牛芳鹏, 李新国, 靳万贵. 2020. 博斯腾湖西岸湖滨绿洲土壤盐分特征[J]. 中国土壤与肥料, (3): 8−15. doi: 10.11838/sfsc.1673-6257.19219
[61] 任娟. 2021. 土壤多环境梯度铁氧化物相分异与磷的耦合响应研究[D]. 重庆: 西南大学, 1−136.
[62] 师焕芝, 李福春, 李旭辉, 吴枫, 罗旭鹏, 李学林, 金章东. 2011. 洛川黄土/古土壤中有机碳的分布特征及其与粘土矿物的相关性[J]. 中国地质, 38(5): 1355−1362. doi: 10.3969/j.issn.1000-3657.2011.05.022
[63] 汤艳杰, 贾建业, 谢先德. 2002. 粘土矿物的环境意义[J]. 地学前缘, 9(2): 337−344. doi: 10.3321/j.issn:1005-2321.2002.02.011
[64] 王敬国. 2017. 生物地球化学: 物质循环与土壤过程[M]. 北京: 中国农业大学出版社, 82−92.
[65] 杨申谷. 2004. 三端元粘土矿物分析方法及应用[J]. 江汉石油学院学报, 26(2): 26−28.
[66] 赵丽雯, 吉喜斌. 2010. 基于FAO−56双作物系数法估算农田作物蒸腾和土壤蒸发研究——以西北干旱区黑河流域中游绿洲农田为例[J]. 中国农业科学, 43(19): 4016−4026. doi: 10.3864/j.issn.0578-1752.2010.19.014
[67] 赵禹, 赵寒森, 刘拓, 白金, 王磊, 梁楠, 王鹏, 杨生飞, 魏锦萍, 李文明, 曾宪红, 张转, 韩海辉, 赵君, 陈振宇. 2022. 西北地区土地质量地球化学调查进展与主要成果[J]. 西北地质, 55(3): 140−154.
[68] 郑庆福, 刘艇, 赵兰坡, 冯君, 王鸿斌, 李春林. 2010. 东北黑土耕层土壤黏粒矿物组成的区域差异及其演化[J]. 土壤学报, 47(4): 734−746. doi: 10.11766/trxb2010470420
-