中国地质调查局 中国地质科学院主办
科学出版社出版

矿物表面CO2−CH4竞争吸附特征与扩散过程研究—以延安气田山西组2段为例

林进, 汪心雯, 王香增, 何庆成, 孟祥振, 吕敏, 王泉波, 杨利超. 2025. 矿物表面CO2−CH4竞争吸附特征与扩散过程研究—以延安气田山西组2段为例[J]. 中国地质, 52(2): 704-713. doi: 10.12029/gc20230813002
引用本文: 林进, 汪心雯, 王香增, 何庆成, 孟祥振, 吕敏, 王泉波, 杨利超. 2025. 矿物表面CO2−CH4竞争吸附特征与扩散过程研究—以延安气田山西组2段为例[J]. 中国地质, 52(2): 704-713. doi: 10.12029/gc20230813002
LIN Jin, WANG Xinwen, WANG Xiangzeng, HE Qingcheng, MENG Xiangzhen, LÜ Min, WANG Quanbo, YANG Lichao. 2025. Competitive adsorption characteristics and diffusion process of CO2−CH4 on mineral surface: A case study of the 2nd section of Shanxi Formation in Yan'an Gas Field[J]. Geology in China, 52(2): 704-713. doi: 10.12029/gc20230813002
Citation: LIN Jin, WANG Xinwen, WANG Xiangzeng, HE Qingcheng, MENG Xiangzhen, LÜ Min, WANG Quanbo, YANG Lichao. 2025. Competitive adsorption characteristics and diffusion process of CO2−CH4 on mineral surface: A case study of the 2nd section of Shanxi Formation in Yan'an Gas Field[J]. Geology in China, 52(2): 704-713. doi: 10.12029/gc20230813002

矿物表面CO2−CH4竞争吸附特征与扩散过程研究—以延安气田山西组2段为例

  • 基金项目: 延安气田CO2驱气增产和地质封存的适宜性评价及注入方案研究(KT0722SFW0001)、中国地质调查局项目(DD20221819)、国家自然科学基金(U2244215)以及中央科研事业单位基本科研业务费项目(JKY202206)联合资助。
详细信息
    作者简介: 林进,男,1968年生,高级工程师,主要从事油气勘探与开发技术研究工作;E-mail: linjinn@163.com
    通讯作者: 王香增,男,1968年生,教授级高级工程师,主要从事致密油气开采工程技术研究工作;E-mail: sxycpcwxz@126.com
  • 中图分类号: TE377; X701

Competitive adsorption characteristics and diffusion process of CO2−CH4 on mineral surface: A case study of the 2nd section of Shanxi Formation in Yan'an Gas Field

  • Fund Project: Supported by Suitability Evaluation and Injection Scheme Study for CO2 Enhanced Gas Recovery and Geological Storage in the Yanchang Gas Field (No.KT0722SFW0001), the project of the China Geological Survey (No. DD20221819), National Natural Science Foundation (No.U2244215) and Central Scientific Research Institution Fundamental Research Funds Project (No.JKY202206).
More Information
    Author Bio: LIN Jin, male, born in 1968, senior engineer,mainly engaged in the research of oil and gas exploration and development technologies; E-mail:linjinn@163.com .
    Corresponding author: WANG Xiangzeng, male, born in 1968, professor level senior engineer, mainly engaged in the research of tight oil and gas extraction engineering technology; E-mail: sxycpcwxz@126.com.
  • 研究目的

    CO2−EGR技术能提高天然气采收率,同时将CO2永久封存于地下,助力实现碳中和目标。CO2−CH4在纳米孔隙中竞争吸附和扩散是增采和封存的关键机理。

    研究方法

    本文以鄂尔多斯盆地延安气田山2储层为靶区,利用分子动力学(MD)和巨正则系统蒙特卡罗(GCMC)方法建立模型,研究储层温压条件下CO2−CH4混合气体在关键矿物(石英和伊利石)纳米基质孔隙中的竞争吸附规律,分析CO2自扩散系数与温压关系。

    研究结果

    (1)在等温(353.15 K)变压(5.9~17.7 MPa)和等压(11.8 MPa)变温(313.15~373.15 K)条件下,石英和伊利石对CO2吸附能力大于CH4,CO2−CH4在石英孔隙中的竞争吸附选择性大于伊利石孔隙;(2)等温(353.15 K)变压(5.9~17.7 MPa)和等压(11.8 MPa)变温(313.15~373.15 K)条件下, CO2−CH4在石英和伊利石孔隙中的竞争吸附选择性分别随压力、温度的增加而降低;(3)低压(5.9 MPa)高温(373.15 K)条件下,CO2在CO2−CH4−石英和CO2−CH4−伊利石系统的流动和扩散效率更高。

    结论

    石英和伊利石对CO2吸附量更高,置换CH4能力更高,CO2封存效果更好。

  • 加载中
  • 图 1  石英结构模型

    Figure 1. 

    图 2  伊利石结构模型

    Figure 2. 

    图 3  CO2−CH4在石英纳米孔隙的竞争吸附模拟图(绿色为CO2分子,紫色为CH4分子,采用联合原子力场)

    Figure 3. 

    图 4  不同目标压力Pt下的CO2(a)和CH4(b)在石英孔隙中的密度分布(红色虚线为±1 nm)

    Figure 4. 

    图 5  CO2−CH4 在石英和伊利石表面的吸附选择性与压力关系

    Figure 5. 

    图 6  不同温度下CO2 (a)和CH4 (b)在石英表面的密度分布(红色虚线为±1 nm)

    Figure 6. 

    图 7  CO2−CH4在石英和伊利石表面的吸附选择性与温度的关系图

    Figure 7. 

    图 8  CO2−CH4在伊利石孔隙的竞争吸附模拟(绿色为CO2分子,紫色为CH4分子,目标压力为11.8 MPa, 温度为353.15 K)

    Figure 8. 

    图 9  不同目标压力Pt 下CO2(a)和CH4 (b)在伊利石表面的密度分布(红色虚线为±1 nm)

    Figure 9. 

    图 10  在不同温度下的CO2 (a)和CH4 (b)在伊利石表面的密度分布(红色虚线为±1 nm)

    Figure 10. 

    图 11  CO2在CO2−CH4−石英系统和CO2−CH4−伊利石系统中的自扩散系数与压力(a)和温度(b)的关系

    Figure 11. 

    表 1  不同压力下CO2−CH4等摩尔化学势及计算压力和摩尔比(T = 353.15 K)

    Table 1.  Equimolar chemical potential, calculated pressure, and molar ratio of CO2−CH4 at different pressures (T = 353.15 K)

    目标压力/
    MPa
    CO2化学势/
    (Kcal/mol)
    CH4化学势/
    (Kcal/mol)
    计算混合气体
    压力/MPa
    CO2−CH4
    摩尔比
    5.90 −9.4468 −8.2991 5.93 1.01
    9.44 −9.1792 −8.0029 9.27 1.01
    11.80 −9.0491 −7.8357 11.82 1.00
    14.16 −8.9538 −7.716 14.13 1.02
    17.70 −8.8396 −7.5482 18.07 1.01
    下载: 导出CSV

    表 2  不同温度下CO2−CH4等摩尔化学势及计算压力和摩尔比(压力P=11.8 MPa)

    Table 2.  Equimolar chemical potential, calculated pressure, and molar ratio of CO2−CH4 at different temperatures (pressure P = 11.8 MPa)

    温度/
    K
    CO2化学势/
    (Kcal/mol)
    CH4化学势/
    (Kcal/mol)
    计算混合气体
    压力/MPa
    CO2−CH4
    摩尔比
    313.15 −6.7985 −7.9549 11.54 1.01
    333.15 −7.3047 −8.4817 11.93 1.00
    353.15 −9.0491 −7.8357 11.82 1.00
    363.15 −8.0965 −9.3324 11.85 0.99
    373.15 −8.3638 −9.6213 11.84 0.99
    下载: 导出CSV

    表 3  不同目标压力下混合气体压力在无孔隙(仅CO2和CH4)和孔隙中的对比

    Table 3.  Comparison of mixed gas pressures in no pores (only CO2 and CH4) and pores under different target pressures

    目标压力/
    MPa
    混合气体压力−
    无孔隙/MPa
    混合气体压力−
    石英孔隙/MPa
    混合气体压力−
    伊利石孔隙/MPa
    5.90 5.93 7.22 7.78
    9.44 9.27 11.88 9.48
    11.80 11.82 15.06 14.68
    14.16 14.13 18.39 16.61
    17.70 18.07 23.86 21.78
    下载: 导出CSV

    表 4  不同温度下混合气体压力在无孔隙(仅CO2和CH4)和孔隙中的对比(目标压力为11.8 MPa)

    Table 4.  Comparison of mixed gas pressure in no pores (only CO2 and CO2) and pores at different temperatures (target pressure is 11.8 MPa)

    温度/
    K
    混合气体压力−
    无孔隙/MPa
    混合气体压力−
    石英孔隙/MPa
    混合气体压力−
    伊利石孔隙/MPa
    313.15 11.54 16.04 15.72
    333.15 11.93 15.68 15.24
    353.15 11.82 15.11 14.78
    363.15 11.85 15.69 15.17
    373.15 11.84 15.00 13.62
    下载: 导出CSV
  • [1]

    Cygan R T, Liang J J, Kalinichev A G. 2004. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. The Journal of Physical Chemistry B, 108(4): 1255−1266.

    [2]

    Dong Dazhong, Zou Caineng, Li Jianzhong, Wang Shejiao, Li Xinjing, WangYuman, Li Denghua, Huang Jinliang. 2011. Shale gas resource potential and exploration and development prospect[J]. Geological Bulletin of China, 31(2): 324−336 (in Chinese with English abstract).

    [3]

    Emami F S, Puddu V, Berry R J, Varshney V, Patwardhan S V, Perry C C, Heinz H. 2014. Force field and a surface model database for silica to simulate interfacial properties in atomic resolution[J]. Chemistry of Materials, 26(8): 2647−2658.

    [4]

    Hamza A, Hussein I A, Al–Marri M J, Mahmoud M, Aparicio S. 2021b. CO2 enhanced gas recovery and sequestration in depleted gas reservoirs: A review[J]. Journal of Petroleum Science and Engineering, 196: 107685.

    [5]

    Hamza A, Hussein I A, Al–Marri M J, Mahmoud M, Shawabkeh R. 2021a. Impact of clays on CO2 adsorption and enhanced gas recovery in sandstone reservoirs[J]. International Journal of Greenhouse Gas Control, 106: 103286.

    [6]

    Hao Y, Yuan L, Li P, Zhao W, Li D, Lu D. 2018. Molecular simulations of methane adsorption behavior in illite nanopores considering basal and edge surfaces[J]. Energy & Fuels, 32: 4783−96.

    [7]

    Harris J G, Yung K H. 1995. Carbon dioxide's liquid–vapor coexistence curve and critical properties as predicted by a simple molecular model[J]. The Journal of Physical Chemistry, 99(31): 12021−12024.

    [8]

    Holmboe M. 2019. Atom: A MATLAB package for manipulation of molecular systems[J]. Clays and Clay minerals, 67: 419−426.

    [9]

    Humphrey W, Dalke A, Schulten K. 1996. VMD: Visual molecular dynamics[J]. Journal of Molecular Graphics, 14: 33−38.

    [10]

    Jing Shasha. 2015. Molecular Simulation of CO2/CH4 Mass Transfer Process in Sandstone Micropores[D]. Chengdu: Southwest Petroleum University, 1−55 (in Chinese with English abstract).

    [11]

    Ju Huijiao, Sun Wei, Yang Xipu, Han Zongyuan. 2011. Reservoir characteristics and main controlling factors of Shan–2 member, Yan 'an Area, Ordos Basin[J]. Fault–block Oil and Gas Field, 18(2): 142−145,157 (in Chinese with English abstract).

    [12]

    Le T, Striolo A, Cole D R. 2015. CO2–C4H10 mixtures simulated in silica slit pores: Relation between structure and dynamics[J]. The Journal of Physical Chemistry C, 119: 15274−15284.

    [13]

    Lei Qun, Wang Hongyan, Zhao Qun, Liu Dexun. 2008. Current situation and suggestions on exploration and development of unconventional oil and gas resources at home and abroad[J]. Natural Gas Industry, 28(12): 7−10 (in Chinese with English abstract).

    [14]

    Lü Fangtao, Ning Zhengfu, Mu Zhongqi, Jia Zejiang, Liu Bei. 2023. Molecular simulation of methane flow in rough quartz nanopores[J]. Journal of Northeast Petroleum University, 47(5): 82−91 (in Chinese with English abstract).

    [15]

    Oldenburg C M, Pruess K, Benson S M. 2001. Process modeling of CO2 Injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery[J]. Energy & Fuels, 15: 293−298.

    [16]

    Plimpton S. 1995. Fast parallel algorithms for short–range molecular dynamics[J]. Journal of Computational Physics, 117: 1−19.

    [17]

    Potoff J J, Siepmann J I. 2001. Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen[J]. AIChE Journal, 47: 1676−1682.

    [18]

    Shi L Z, Wang Z Z, Xing Z T, Meng S, Guo S, Wu S M, Luo L Y. 2024. Geological characteristics of unconventional tight oil reservoir: A case study of Upper Cretaceous Qingshankou Formation, northern Songliao Basin, NE China[J]. China Geology, 7(1): 51−62.

    [19]

    Song Zhengping, Zhang Bin, Kang Tianhe. 2018. Molecular simulation of competitive adsorption of CO2/CH4 in kaolinite based on adsorption site theory[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 37(4): 724–730 (in Chinese with English abstract).

    [20]

    Sun H Y, Zhao H, Qi N, Qi X Q, Zhang K, Sun W C, Li Y. 2016. Mechanistic insight into the displacement of CH4 by CO2 in calcite slit–nanopores: the effect of competitive adsorption[J]. RSC Advances, 6: 104456−104462. doi: 10.1039/C6RA23456A

    [21]

    Sun Haoyang. 2014. Study on Micro–mechanism of Carbon Dioxide Enhanced Shale Recovery[D]. Jinan: Shandong University, 1–103(in Chinese with English abstract).

    [22]

    Sun Renyuan, Zhang Yanfei, Fan Kunkun, Shi Yonghong, Yang Shikai. 2015. Molecular simulations of adsorption characteristics of clay minerals in shale[J]. CIESC Journal, 66(6): 2118−2122 (in Chinese with English abstract).

    [23]

    Sun Ying. 2021. Mechanism of CO2 Enhanced Oil Recovery in Shale Gas Reservoirs Based on Competitive Adsorption[D]. Dongying: China University of Petroleum (East China), 1–116 (in Chinese with English abstract).

    [24]

    Wang Xiangzeng. 2016. Progress of unconventional gas exploration and development in Yanchang Petroleum Group[J]. Acta Petrolei Sinica, 37(1): 137−144 (in Chinese with English abstract).

    [25]

    Wang Xiangzeng, Qiao Xiangyang, Mi Naizhe, Wang Ruogu. 2018. Beneficial development supporting technology of low permeability tight sandstone gas reservoir in Yan 'an Gas field[J]. Natural Gas industry, 38(11): 43−51 (in Chinese with English abstract).

    [26]

    Watts R. 1996. Objectives of the U. S. DOE's research[J]. The Leading Edge, 15: 906.

    [27]

    Yang Hu, Wang Jianmin. 2015. Study on tight sandstone reservoir and micro–pore throat characteristics of Shanxi Formation in Yanchang gas field[J]. Journal of Xi'an University of Science and Technology, 35(6): 755−762 (in Chinese with English abstract).

    [28]

    Zhang Minghang, Guo Ping, Jiang Wei, Chen Hong. 2016. Study on adsorption characteristics of CO2/CH4 in illite[J]. World Science and Technology Research and Development, 38(5): 950−954 (in Chinese with English abstract).

    [29]

    Zhang Xinmin, Zheng Hongqing, Li Gangyao. 2008. Research on fracturing technology of low permeability tight sandstone gas reservoir in Junggar Basin[J]. Xinjiang Oil and Gas, 4(S1): 69−72 (in Chinese with English abstract).

    [30]

    董大忠, 邹才能, 李建忠, 王社教, 李新景, 王玉满, 李登华, 黄金亮 2011. 页岩气资源潜力与勘探开发前景[J]. 地质通报, 31(2): 324–336.

    [31]

    景莎莎. 2015. 砂岩微孔隙中CO2/CH4传质过程的分子模拟研究[D]. 成都: 西南石油大学, 1–55.

    [32]

    琚惠姣, 孙卫, 杨希濮, 韩宗元. 2011. 鄂尔多斯盆地延安地区山2段储层特征及其主控因素[J]. 断块油气田, 18(2): 142–145, 157.

    [33]

    雷群, 王红岩, 赵群, 刘德勋. 2008. 国内外非常规油气资源勘探开发现状及建议[J]. 天然气工业, 28(12): 7−10. doi: 10.3787/j.issn.1000-0976.2008.12.003

    [34]

    吕方涛, 宁正福, 穆中奇, 贾泽江, 刘蓓. 2023. 粗糙石英纳米孔隙甲烷流动分子模拟[J]. 东北石油大学学报, 47(5): 82−91. doi: 10.3969/j.issn.2095-4107.2023.05.007

    [35]

    宋正平, 张彬, 康天合. 2018. 基于吸附位理论的CO2/CH4在高岭石中竞争吸附的分子模拟[J]. 矿物岩石地球化学通报, 37(4): 724–730.

    [36]

    孙浩洋. 2014. 二氧化碳提高页岩采收率的微观机制研究[D]. 济南: 山东大学, 1–103.

    [37]

    孙仁远, 张云飞, 范坤坤, 史永宏, 杨世凯. 2015. 页岩中黏土矿物吸附特性分子模拟[J]. 化工学报, 66(6): 2118−2122.

    [38]

    孙莹. 2021. 基于竞争吸附的页岩气藏CO2提高采收率机理研究[D]. 东营: 中国石油大学(华东), 1–116.

    [39]

    王香增. 2016. 延长石油集团非常规天然气勘探开发进展[J]. 石油学报, 37(1): 137−144.

    [40]

    王香增, 乔向阳, 米乃哲, 王若谷. 2018. 延安气田低渗透致密砂岩气藏效益开发配套技术[J]. 天然气工业, 38(11): 43−51. doi: 10.3787/j.issn.1000-0976.2018.11.005

    [41]

    杨虎, 王建民. 2015. 延长气田山西组致密砂岩储层及微观孔喉特征研究[J]. 西安科技大学学报, 35(6): 755–762.

    [42]

    张明航, 郭平, 蒋炜, 陈红. 2016. CO2/CH4在伊利石中的吸附特性研究[J]. 世界科技研究与发展, 38(5): 950−954.

    [43]

    张新民, 郑洪庆, 李纲要. 2008. 准噶尔盆地低渗致密砂岩气藏压裂工艺技术研究[J]. 新疆石油天然气, 4(S1): 69–72.

  • 加载中

(11)

(4)

计量
  • 文章访问数:  341
  • PDF下载数:  128
  • 施引文献:  0
出版历程
收稿日期:  2023-08-13
修回日期:  2024-01-30
刊出日期:  2025-03-25

目录