中国地质调查局 中国地质科学院主办
科学出版社出版

河北承德锶元素地球化学特征与富锶生态产业发展潜力

孙厚云, 刘卫, 樊彦超, 彭香景, 马峰, 卫晓锋, 陈自然, 杨忠芳. 2025. 河北承德锶元素地球化学特征与富锶生态产业发展潜力[J]. 中国地质, 52(3): 801-833. doi: 10.12029/gc20230912001
引用本文: 孙厚云, 刘卫, 樊彦超, 彭香景, 马峰, 卫晓锋, 陈自然, 杨忠芳. 2025. 河北承德锶元素地球化学特征与富锶生态产业发展潜力[J]. 中国地质, 52(3): 801-833. doi: 10.12029/gc20230912001
SUN Houyun, LIU Wei, FAN Yanchao, PENG Xiangjing, MA Feng, WEI Xiaofeng, CHEN Ziran, YANG Zhongfang. 2025. Geochemical characteristics of strontium and development potential of strontium−rich ecological industry in Chengde, Hebei[J]. Geology in China, 52(3): 801-833. doi: 10.12029/gc20230912001
Citation: SUN Houyun, LIU Wei, FAN Yanchao, PENG Xiangjing, MA Feng, WEI Xiaofeng, CHEN Ziran, YANG Zhongfang. 2025. Geochemical characteristics of strontium and development potential of strontium−rich ecological industry in Chengde, Hebei[J]. Geology in China, 52(3): 801-833. doi: 10.12029/gc20230912001

河北承德锶元素地球化学特征与富锶生态产业发展潜力

  • 基金项目: 承德市研发投入强度增长奖励资金科技专项—承德市富锶功能农产品产业化关键技术研究(202304B047),河北省重点研发计划专项(21327504D)与中国地质调查局项目(DD20190822)联合资助。
详细信息
    作者简介: 孙厚云,男,1990年生,博士,助理研究员,主要从事水文地球化学与环境地球化学研究;E-mail:shyun2016@126.com
    通讯作者: 刘卫,男,1985年生,博士研究生,主要从事环境地球化学及健康地质研究;E-mail:625382448@qq.com
  • 中图分类号: X703

Geochemical characteristics of strontium and development potential of strontium−rich ecological industry in Chengde, Hebei

  • Fund Project: Supported by the project of Chengde Key R&D Plan (No.202304B047), Hebei Province Key R&D Plan (No.21327504D) and the project of China Geological Survey (No.DD20190822).
More Information
    Author Bio: SUN Houyun, male, born in 1990, Ph.D., assistant researcher, engaged in the research on hydrogeochemistry and environmental geochemistry; E-mail: shyun2016@126.com .
    Corresponding author: LIU Wei, male, born in 1985, Ph.D. candidate, engaged in the research on ecological geochemistry and health geology research; E-mail: 625382448@qq.com.
  • 研究目的

    厘清基岩−风化壳−土壤−特色作物体系中锶的丰度、物质来源、迁移聚集规律,对助力承德市富锶土壤标准建立,指导富锶生态产业发展具有重要意义。

    研究方法

    通过参比元素标准化方法厘定了承德全区和红旗—大庙小流域表层土壤的锶元素地球化学基线;采用多元统计分析与GIS方法、岩石风化元素化学损耗分数CDF、元素生物富集系数BCF,电子探针和原位微区分析等方法阐明了不同地质建造基岩、风化层和土壤,不同水体和特色作物样品的Sr元素丰度、空间分异与迁聚特征,识别了高锶特征寄主矿物类型,探讨了承德市锶元素异常的地球化学成因。系统归纳总结了国内外富锶生态产业的发展现状,结合承德市特色生态资源禀赋特征,评价了承德市富锶生态产业发展潜力。

    研究结果

    承德全区和红旗—大庙小流域土壤Sr地球化学基线值分别为206.87~216.49 mg/kg和241.69~260.51 mg/kg。全区表层土壤Sr平均含量为514.59 mg/kg,其中59.05%和68.10%样品Sr含量超过全区地球化学基线值和中国表层土壤Sr背景基准值。承德全区基岩Sr含量平均达546.57 mg/kg,富锶寄主矿物为辉石、橄榄石、磷灰石、钙长石和角闪石。化学风化过程中,斜长岩、斜长片麻岩和花岗岩Sr淋溶损失程度较高。基岩Sr丰度空间分异与区域构造格架具有良好的耦合关系,华北克拉通大陆地壳减薄隆起造成丰宁—隆化和大庙—娘娘庙深大断裂之间富锶的太古宇变质基底物质上涌,基性岩浆与陆壳混染、结晶分离形成的大庙斜长岩体、海西期侵入岩,火山岩和太古代变质基底建造多具富锶特征。滦河流域58.08%水样,红旗—大庙斜长岩体周边81.61%井水和53.57%泉水Sr2+浓度超过锶矿泉水标准限值,地热温泉水Sr2+浓度平均达0.78 mg/L。区内34种经济作物Sr平均含量范围为0.77~26.60 mg/kg,道地黄芩Sr含量范围为15.94~116.51 mg/kg,显著高于我国其他黄芩产区。

    结论

    承德市富锶水土资源禀赋优势突出,地理标志性生态产品、道地中药材锶富集明显,在饮用矿泉水、地热温泉康养、饮料饮品和酿酒,特色生态农业、绿色食品和农副产品开发,道地药材等富锶生态产业方面具有巨大的发展潜力。

  • 加载中
  • 图 1  承德市地质建造分区,样品采集与水样Sr2+质量浓度与构造耦合分布图

    Figure 1. 

    图 2  承德全区、典型研究区表层土壤锶与其参比元素95%置信限内的回归曲线

    Figure 2. 

    图 3  承德市全域基岩和土壤Sr含量空间分布图及构造演化动力学模型

    Figure 3. 

    图 4  承德市滦河流域表层土壤(a),红旗—大庙矿集区表层土壤(b)与基岩(c)元素含量主成分分析因子载荷图

    Figure 4. 

    图 5  承德市不同地质建造基岩样品Sr与Ba、CaO和Rb含量相关关系及地球化学判别图解

    Figure 5. 

    表 1  承德市锶元素地球化学岩(土)与植物样品采集类型与数量

    Table 1.  Collection types and quantities of strontium geochemical rock (soil) and plant samples in Chengde City

    样品类型 数量 总计 样品类型 数量 总计
    岩石风化剖面
    BRS体系
    斜长岩—辉长岩 17 1145 其他岩土样品 红旗小流域深层土壤 26 418
    斜长片麻岩—变粒岩 24 坝上地区风沙土 140
    钾长片麻岩 15 全区黄土 24
    花岗岩 201 钒钛磁铁矿—铁磷矿石 50
    变质闪长岩 36 铅锌矿石 15
    玄武岩 196 钒钛磁铁矿尾矿砂 68
    安山岩 154 水系沉积物 95
    流纹岩—凝灰岩 167 水质样品 滦河流域浅层地下水 167 892
    陆源碎屑砂砾岩 98 承德全区地热温泉 40
    长石石英砂岩 15 红旗—大庙小流域井 223
    泥页岩 34 红旗—大庙小流域泉 28
    白云岩 168 红旗—大庙矿山废水 28
    灰岩 20 红旗—大庙河水 83
    表层土壤
    (0~20 cm)
    承德全区 376 557 滦平盆地等浅层地下水 323
    承德滦河流域 351 植物样品 道地药材—黄芩 66 135
    红旗—大庙小流域 181 其他植物样品 69
    下载: 导出CSV

    表 2  标准化方法确定的土壤Sr元素化学基线(mg/kg)

    Table 2.  Geochemical baseline value of soil strontium determined by standardization method (mg/kg)

    元素 承德全区(n=541) 红旗—大庙钒钛磁铁矿矿集区流域(n=71)
    回归方程 R2 P 基线值 回归方程 R2 P 基线值
    Sr Sr = 7.741Sc+127.76 0.153 0.01 206.871 Sr = 1.604Sc+242.64 0.624 0.01 260.513
    Sr =19.746Fe2O3+113.87 0.192 0.01 209.243 Sr = 4.277Fe2O3+218.94 0.012 0.01 241.693
    Sr = 1.452La+159.16 0.039 0.01 210.473 Sr =−1.554La+312.37 0.026 0.01 257.996
    Sr = 89.620Eu+96.40 0.185 0.01 216.494 Sr =−22.200Eu+393.48 0.004 0.01 353.298
    下载: 导出CSV

    表 3  承德地区不同地质建造成土母质区典型剖面岩石—风化层—土壤系统及其他环境介质Sr丰度统计特征

    Table 3.  Strontium abundance of bedrock−regolith−soil samples in typical weathering profiles of different geological formations and other environmental medias in Chengde area

    分层 土壤 风化层 基岩 CDF 华北克拉通
    岩性 Min Max Mean Cv Min Max Mean Cv Min Max Mean Cv S−P R−P Mean Baseline
    斜长岩—辉长岩 196.10 1301.00 536.40 0.815 237.30 1594.00 672.25 0.593 447.50 3289.00 1289.13 0.692 −1.40 −0.92 486.0 305.0
    斜长片麻岩—变粒岩 57.67 949.90 354.52 0.533 67.40 1364.00 388.20 0.651 27.72 1354.00 493.21 0.612 −0.39 −0.27 319.0~432.0 288.0~411.0
    钾长片麻岩 265.80 698.60 469.17 0.464 163.50 929.70 564.62 0.514 148.00 884.10 372.60 0.839 0.21 0.34 432.0 411.0
    安山岩类 32.86 1000.00 386.69 0.667 21.79 1598.00 662.62 0.645 22.27 1638.00 658.32 0.742 −0.70 0.01 614.0 614.0
    流纹岩—凝灰岩类 27.53 584.30 186.74 0.407 14.62 1976.00 221.66 1.560 14.10 8621.00 401.18 2.820 −1.15 −0.81 211.0~293.0 195.0~205.0
    变质闪长岩 171.90 1077.00 594.67 0.473 125.00 1477.00 738.29 0.446 97.31 1527.00 891.55 0.463 −0.50 −0.21 721.0 568.0
    花岗岩类 100.30 1365.00 357.61 0.698 57.10 3977.00 513.78 0.985 28.18 1966.00 472.49 0.897 −0.32 0.08 298.0 263.0
    陆源碎屑岩 69.60 790.10 268.74 0.582 39.49 980.80 322.07 0.776 10.02 928.00 395.45 0.700 −0.47 −0.23 391.0 283.0
    长英质砂岩 130.70 511.30 255.97 0.570 75.30 618.30 296.27 0.854 89.96 711.20 312.19 1.109 −0.22 −0.05 284.0 233.0
    泥页岩 32.52 251.90 130.80 0.488 35.29 161.80 71.56 0.558 41.03 157.70 95.16 0.466 0.27 −0.33 169.0 142.0
    玄武岩 132.70 994.80 276.60 0.560 119.30 2087.00 471.33 0.700 28.90 3016.00 643.13 0.736 −1.33 −0.36 602.0 548.0
    白云岩 48.78 299.10 127.51 0.428 18.97 304.70 69.70 0.768 17.25 317.70 60.37 1.026 0.53 0.13 67.0 63.0
    灰岩 97.20 124.30 111.67 0.077 97.00 253.90 137.68 0.563 169.20 374.50 251.80 0.430 −1.25 −0.83 286.0 271.0
    其他 钒钛磁铁矿矿石(n=50) 钒钛磁铁矿尾矿砂(n=68) 哈叭沁—铁马支流包气带(n=26) 地壳 480.0
    64.11 4486.00 811.59 1.263 110.60 1049.00 457.21 0.411 179.60 368.90 233.74 0.165 中国东部大陆地壳 350.0
    黄土(n=24) 风成沙(n=140) 全国土壤背景值 197.0
    23.24 315.80 186.97 0.347 92.47 1138.00 152.93 0.732 黄淮海平原土壤 177.0
    水系沉积物 滦河干流 伊逊河干流 哈叭沁—铁马支流 水系沉积物 146.0
    247.60 251.30 249.48 0.006 161.40 985.40 327.69 0.462 360.50 778.10 586.07 0.203 浅海沉积物 230.0
    水环境 承德滦河
    流域
    坝上高原孔隙裂隙水(n=35) 燕山山地滦河中上游裂隙水(n=68) 滦河中游孔隙岩溶裂隙水(n=64) 地热温泉(n=40)
    0.04 2.28 0.30 1.460 0.07 0.98 0.46 0.540 0.07 3.42 0.59 0.850 0.15 3.81 0.78 1.026
    红旗—大庙
    流域
    井(n=223) 泉(n=28) 地表水(n=83) 矿山废水(n=28)
    0.09 9.49 0.82 1.227 0.13 1.69 0.58 0.734 0.09 2.39 0.61 0.610 0.44 5.99 1.85 0.843
      注:Min表示最小值;Max 表示最大值;Mean表示均值;Cv表示变异系数;CDF—Chemical Depletion Fraction,化学损耗分数;S−P(Soil−Parent material)表示土壤相对于成土母质化学损耗分数;R−P(Regolith−Parent material)表示风化层相对于成土母质化学损耗分数;Sr含量单位为mg/kg。
    下载: 导出CSV

    表 4  常见食品锶含量及富锶食品研究开发现状(mg/kg)

    Table 4.  Strontium content in common foods, research and development status of strontium-rich foods (mg/kg)

    项目 Sr含量 项目 Sr含量/ 项目 Sr含量
    综合 谷类及谷类制品a 1.82 酒类 赤霞珠干红葡萄酒j 0.10~5.00 大田粮食作物 薯类(牙买加)n 0.71~16.70
    水果和蔬菜a 1.31 酱香型白酒k 0.00537~0.01437 土豆(神农架)i 0.132~0.268
    坚果b 9.759 ±5.181 锶泉白酒l 0.75~1.30 红薯(神农架)i 0.138~1.540
    饮料a 0.62 锶泉黄酒m >0.05 富锶水稻i 0.524~0.533
    食用油a 0.11 蔬菜水果 水果(牙买加)n 0.48 富锶大米s 0.65
    淡水鱼类与海鲜类a 7.17~9.56 叶类蔬菜(牙买加)n 0.15~0.42 富锶小米r 38.2
    海州湾水产c 1.14~3.33 根茎类蔬菜(牙买加)n 0.35~2.05 小麦 3.0
    肉类及内脏a 0.18~1.20 水果(丹麦)o 0.79 小麦 1.742~3.693
    乳及乳制品a 0.54 叶类蔬菜(丹麦)o 1.60 筛分后小麦精粉 0.78±0.05
    蛋及蛋制品a 0.52 根茎类蔬菜(丹麦)o 1.30 麦麸 2.97±0.15
    盐、香料等调味品a 1.12 葫芦科(神农架)i 0.32 完整小麦颗粒 1.42±0.07
    富锶酱d ≥0.30 茄科(神农架)i 0.36 荞麦 2.70~6.80
    中药材(105种)e 23.50 苋科(神农架)i 2.47 燕麦 1.30
    茶叶 埃及洋甘菊f 36.8 ± 1.5 十字花科(神农架)i 2.25 黑麦 7.8~70.2
    葡萄牙狭叶松果菊f 32.6 ± 1.3 山楂果肉p 0.406 大麦 43.20
    西班牙阔叶薰衣草f 75.8 ± 2.1 山楂叶p 1.14 玉米 0.0008~0.02
    保加利亚药葵f 53.1 ± 1.6 山楂种子p 0.19 玉米(河南固始)s 0.431~0.629
    绿薄荷g 122.07±2.68 富锶苹果q 1.36~1.66 玉米(神农架)i 0.132~0.274
    波耳多叶g 90±1.20 苹果(神农架)i 0.132 大豆(鲜重)i 0.268
    洋甘菊g 79.50±1.30 富锶葡萄q 0.34 大豆(干重) 138.0
    绿茶g 45.42±1.88 葡萄(神农架)i 0.132 其他 牛肝(标准物质)e 0.53±0.03
    红茶g 27.90±0.78 富锶草莓q 1.72 对虾(标准物质)e 40.6±1.7
    白茶g 14.70±0.50 富锶猕猴桃q 1.10 贻贝(标准物质)e 12.8±0.6
    道真绿茶h 2.5~10.0 富锶山药r 1.73~10.6 牛肝(标准物质)e 0.138
    菊花(承德) 4.46 坚果类 富锶大榛子q 1.06 牡蛎肉(标准物质)e 10.36
    木鱼茶叶(神农架)i 0.524 花生(河南固始)s 2.493~7.747 豆腐a 2.71
    茶叶(标准物质)e 15.2±0.7 杏仁(土耳其)t 150.61 高锶金针菇 0.35~6.7
    茶叶(标准物质)e 10.8±1.8 野核桃仁(神农架)i 1.018 富锶豆芽 0.50~2.5
    茶树叶(标准物质) 52.4±5.6 板栗(神农架)i 0.044 富锶粉条/淀粉 ≥12.73
      注:a—Millour et al., 2012;b—González et al., 2013;c—王雪莲等, 2022;d—席雪瑶等, 2023;e—管竞环和李恩宽, 1998;f—Fernandes et al., 2022;g—Martins et al., 2015;h—DB 52/T 1219—2017;i—卜怡然等, 2020肖潇等, 2022;j—韩深等, 2014;k—姜涛, 2013;l—沈阳市锶泉酒厂, 1995, 1996; m—余亚芳, 2014;n—Howe et al., 2005;o—Danish Veterinary and Food Administration, 2002;p—Cindrić et al., 2005;q—韩娟和郭燕枝, 2022;r—杨思宇, 2019;s—王东晓等, 2023;t—Kamar et al., 2018;u—罗军强等, 2019
    下载: 导出CSV

    表 5  承德地区与国内外典型药材产区根系土、栽培黄芩、野生黄芩及其他常见药材锶含量(mg/kg)

    Table 5.  Strontium content in root soil samples, cultivated and wild Scutellaria baicalensis, and other common medicinal materials in Chengde and typical domestic and foreign medicinal material production areas (mg/kg)

    黄芩种类 项目 Sr含量 承德药材 鲜重Sr含量 常见药材Sr含量 产地
    Min Max Mean 黄芪 11.90 47.00 辽宁(干重)b
    野生黄芩
    (大庙—红旗)
    土壤 100.50 4613.0 1106.5 桔梗 9.89 11.60 湖北(干重)b
    15.93 116.51 45.74 苦参 18.10 7.56 河北b
    茎叶 24.68 153.93 67.62 山楂 11.20 9.84 河南(干重)c
    栽培黄芩
    (五道岭—金沟屯)
    土壤 141.70 687.40 228.94 柴胡 11.39 18.80 湖北(干重)b
    17.19 36.00 25.16 郁李仁 2.75 3.08 内蒙古(干重)b
    茎叶 22.19 66.74 32.24 华北大黄 44.56 60.13 恩施(干重)d
    金沟屯栽培黄芩 土壤 141.70 687.40 240.71 射干 10.49 0.57 神农架(鲜重)e
    20.10 36.00 28.41 土贝母 7.27 2.31 恩施(干重)d
    茎叶 27.36 66.74 39.55 紫苏叶 10.40 3.74 神农架(鲜重)e
    五道岭栽培黄芩 土壤 146.80 455.50 220.38 当归根茎 3.59 18.70 甘肃(根干重)b
    17.19 27.61 22.79 当归叶 12.80 32.10 恩施(根干重)d
    茎叶 22.19 34.90 28.25 党参根 20.50 46.20 湖北(根干重)b
    采样位置 Sr含量与生物富集系数 党参茎 52.00 51.86 恩施(根干重)d
    土壤 黄芩 BCF 党参叶 61.70 18.00 山西潞党参b
    承德滦平
    (以鲜重计)
    所有样品 616.08 34.24 0.118 何首乌根 11.80 1.91 神农架(鲜重)e
    野生黄芩 1106.46 45.74 0.106 何首乌茎 12.20 0.40 俄罗斯(鲜重)f
    栽培黄芩 228.94 25.16 0.128 甘草 21.21 294.0 内蒙古(干重)b
    金沟屯黄芩 240.71 28.41 0.112 荆芥叶 23.00 11.70 意大利(鲜重)g
    五道岭黄芩 220.38 22.79 0.150 板蓝根 4.51 连翘 8.30 湖北b
    河北围场a 41.46 211.16 5.09 苍术 13.26 11.40 克罗地亚h
    河北赤城a 33.53 156.14 4.66 知母 8.97 丹参 43.30 湖北b
    黑龙江呼玛a 181.08 48.56 0.27 地榆 25.11 6.52 山东b
    黑龙江杜尔伯特a 92.07 23.08 0.25 藿香茎 8.38 葛根 5.46 广西b
    吉林白城a 156.01 27.42 0.18 藿香叶 18.43 104.3 恩施d
    吉林延吉a 105.39 17.19 0.16 穿山龙 119.00 黄柏 94.30 湖北b
    内蒙古林西a 88.41 24.16 0.27 威灵仙根 15.90 99.69 恩施d
    内蒙古赤峰a 38.97 19.31 0.50 威灵仙茎 21.00 百合 0.39 恩施d
    内蒙古额尔古纳a 70.44 15.32 0.22 威灵仙叶 52.20 菊花 14.30 湖北b
    甘肃合水a 58.86 17.11 0.29 马鞭草茎 21.60 神农香菊 13.07 恩施d
    北京延庆a 120.90 16.77 0.14 马鞭草叶 74.20 桃仁 11.50 陕西b
    陕西延安a 71.40 14.69 0.21 瞿麦茎 15.30 杏仁 7.92 陕西b
    陕西太白a 32.95 10.16 0.31 瞿麦叶 26.40 明党参 14.20 安徽b
    陕西山阳a 27.22 9.24 0.34 千屈菜 9.83 太子参 12.00 山东b
    山西五台a 39.16 13.49 0.34 藁本根 14.82 温热药 40.03 总计105种中药材b
    山西汾阳a 32.14 12.15 0.38 鸡冠花叶 23.18 寒凉药 56.73
      注:a—王升等, 2014;b—管竞环和李恩宽, 1998;c—Xu, 2009;d—汪丹等, 2022;e—卜怡然等, 2020肖潇等, 2022;f—Dyakova, 2023;g—Zeinera et al., 2015;h—Bonari et al., 2019
    下载: 导出CSV
  • [1]

    An Yonglong, Liu Dongda, Wang Xiaofeng, Yin Zhiqiang, Wang Aijun, Wan Liqin, Qi Huan, Shao Hai. 2022. Thoughts on "the 14th Five−Year Plan" of municipal natural resources under the new development pattern−Taking Chengde City of Hebei Province as an example[J]. Natural Resource Economics of China, 35(3): 66−72 (in Chinese with English abstract).

    [2]

    Arth J G. 1976. Behavior of trace elements during magmatic processes: A summary of theoretical models and their applications[J]. Journal of Research of the U. S. Geological Survey, 4: 41−47.

    [3]

    Birke M, Rauch U, Harazim B, Lorenz H, Glatte W. 2010. Major and trace elements in German bottled water, their regional distribution, and accordance with national and international standards[J]. Journal of Geochemical Exploration, 107: 245−271. doi: 10.1016/j.gexplo.2010.06.002

    [4]

    Bonari G, Monaci F, Nannoni F, Angiolini C, Protano G. 2019. Trace element uptake and accumulation in the medicinal herb Hypericum perforatum L. across different geolithological settings[J]. Biological Trace Element Research, 189: 267−276. doi: 10.1007/s12011-018-1453-4

    [5]

    Bruna S A, Lorenzo F, Massimo D’ A, Vincenzo M, Mariano M, Ross S, David W. 2023. Characterizing wine terroir using strontium isotope ratios: a review[J]. Isotopes in Environmental and Health Studies, 59(4-6): 327−348.

    [6]

    Bu Yiran, Wu Libang, Huang Qiang, Zhou Yide, Zhang Xiuqin, Gao Rongjie, Wei Xiuli, Liu Zhiguo. 2020. Investigation on the resources of strontium−rich plants in Shennongjia[J]. Jourmal of Food Safety and Quality, 11(3): 932−937 (in Chinese with English abstract).

    [7]

    Cao Yanling, Wu Bo, Fan Zhenhua, Cui Su, Liu Qianran, Guo Peng, Wang Yanting. 2021. Study on geological origin of strontium rich soil in Dingtao Area in Shandong Province[J]. Shandong Land and Resources, 37(1): 28−36 (in Chinese with English abstract).

    [8]

    Charlier B, Namur O, Bolle O, Latypov R, Duchesne J. 2015. Fe–Ti–V–P ore deposits associated with Proterozoic massif−type anorthosites and related rocks[J]. Earth−Science Reviews, 141: 56−81. doi: 10.1016/j.earscirev.2014.11.005

    [9]

    Chen W T, Zhou M F, Gao J F, Zhao T P. 2015. Oscillatory Sr isotopic signature in plagioclase megacrysts from the Damiao anorthosite complex, North China: Implication for petrogenesis of massif−type anorthosite[J]. Chemical Geology, 393−394: 1−15. doi: 10.1016/j.chemgeo.2014.11.008

    [10]

    China National Environmental Monitoring Centre. 1990. Background Values of Soil Elements in China[M]. Beijing: China Environmental Science Press, 87−91 (in Chinese).

    [11]

    Cindrić I J C A, Zeiner M, Konanov D M, Stingeder G. 2005. Metal characterization of White Hawthorn organs and infusions[J]. Journal of Agricultural and Food Chemistry, 63(6): 1798−1802.

    [12]

    Coish R A, Sinton C W. 1992. Geochemistry of mafic dikes in the Adirondack mountains: Implications for late Proterozoic continental rifting[J]. Contributions to Mineralogy and Petrology, 110: 500−514. doi: 10.1007/BF00344084

    [13]

    Danish Veterinary and Food Administration. 2002. Danish Food Composition Databank [DB/OL]. National Food Institute, Technical University of Denmark. Available from: www. foodcomp. dk.

    [14]

    Dyakova N A. 2023. Features of accumulation of macro−and trace elements by medicinal plant raw materials of Voronezh region[J]. Pharmaceutical Chemistry Journal, 56: 1471−1476. doi: 10.1007/s11094-023-02816-1

    [15]

    Fan Qingjie, Han Jianguo, Xiang Fuxing, Ji Zhiqiang. 2018. Introduction and demonstration of new brewing varieties of Sorghum in Chengde[J]. Horticulture & Seed, 38(1): 51−54 (in Chinese with English abstract).

    [16]

    Fernandes J, Reboredo F H, Luis I, Silva M M, Simões M M, Lidon F C, Ramalho J C. 2022. Elemental composition of commercial herbal tea plants and respective infusions[J]. Plants, 11(11): 1412. doi: 10.3390/plants11111412

    [17]

    Goldschmidt V M. 1933. Grundlagen der quantitativen Geochemie[J]. Fortschr Mineral, 17: 112−156.

    [18]

    Goldschmidt V M. 1954. Geochemistry[M]. Oxford: Clarendon Press.

    [19]

    González W D, Rubio C, Gutiérrez Á J, González G L, Mesa J M C, Gironés C R, Ojeda A B, Hardisson A. 2013. Dietary intake of barium, bismuth, chromium, lithium, and strontium in a Spanish population (Canary Islands, Spain)[J]. Food and Chemical Toxicology, 62: 856−868.

    [20]

    Guan Jinghuan, Li Enkuan. 1998. Quantification of TCM Theory and Trace Elements[M]. Wuhan: Hubei Publishers of Science and Technology (in Chinese).

    [21]

    Guo Lanping, Wang Sheng, Zhang Ji, Yang Guang, Zhao Manxi, Ma Weifeng, Zhang Xiaobo, Li Xuan, Han Bangxing, Chen Naifu, Huang Luqi. 2014. Effects of ecological factors on secondary metabolites and inorganic elements of Scutellaria baicalensis and analysis of geoherblism[J]. Science China: Life Science, 44(1): 66−74 (in Chinese with English abstract).

    [22]

    Guo Yingchao, Sun Zhihui, Liu Wei, Zhao Jing, Fan Yanchao, Jing Zhihua. 2023. Characteristics of strontium−rich soils and strontium content of crops in Chengde[J]. Mineral Exploration, 14(7): 1289−1296 (in Chinese with English abstract).

    [23]

    Han Juan, Guo Yanzhi. 2022. Report on the Development of Strontium−rich Food in China[M]. Beijing: China Light Industry Press, 1−120 (in Chinese).

    [24]

    Han Shen, Liang Nana, Kong Weiheng, Gu Jin, Gao Feng, Wang Peiyue, Liu Yin. 2014. Varietal characterization of mineral elements in Cabernet Sauvignon dry red wines and its application in geographical origin traceability[J]. China Brewing, 33(12): 34−41 (in Chinese with English abstract).

    [25]

    He H L, Yu S Y, Song X Y, Du Z S, Dai Z H, Zhou T, Xie W. 2016. Origin of nelsonite and Fe–Ti oxides ore of the Damiao anorthosite complex, NE China: Evidence from trace element geochemistry of apatite, plagioclase, magnetite and ilmenite[J]. Ore Geology Reviews, 79: 367–381.

    [26]

    Health Canada. 2019. Guidelines for Canadian drinking water quality summary table[S]. Ottawa: Health Canada.

    [27]

    Hou Qingye, Yang Zhongfang, Yu Tao, Xia Xueqi, Cheng Hangxin, Zhou Guohua. 2020. Soil Geochemical Parameters in China[M]. Beijing: Geological Publishing House, 1−1249 (in Chinese).

    [28]

    Howe A, Fung L H, Lalor G, Rattray R, Mitko V. 2005. Elemental composition of Jamaican foods 1: A survey of five food crop categories[J]. Environmental Geochemistry and Health, 27: 19−30. doi: 10.1007/s10653-004-5671-7

    [29]

    Hu J L, Hu S X, Yang F Q, Wang N, Yin M. 2019. Geochemical characteristics and resource potential evaluation of Strontium−rich soil in Northern Suizhou, Hubei Province[J]. Resources Environment & Engineering, 33(3): 341−346, 367.

    [30]

    Huang Xulai, Gao Yanan, Zhang Yangdong, Wang Jiaqi, Zheng Nan. 2023. Research progress of strontium function in food[J]. Food Science, 44(15): 397−406 (in Chinese with English abstract).

    [31]

    Jiang Tao. 2013. Environmental Geochemistry of Geographic Origin and Chemical Labels of Sauce Flavor Type−Liquor[D]. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences (in Chinese with English abstract).

    [32]

    Kabata P A, Mukherjee A B. 2007. Trace Elements from Soils to Human [M]. Berlin Germany: Springer−Verlag Berlin Heidelberg.

    [33]

    Kamar V, Dağalp R, Taştekin M. 2018. Determination of heavy metals in Almonds and mistletoe as a parasite Growing on the almond tree using ICP−OES or ICP−MS[J]. Biological Trace Element Research, 185: 226−235. doi: 10.1007/s12011-017-1223-8

    [34]

    Karadaş C, Kara D. 2012. Chemometric approach to evaluate trace metal concentrations in some spices and herbs[J]. Food Chemistry, 130: 196−202. doi: 10.1016/j.foodchem.2011.07.006

    [35]

    Košić K, Pivac T, Romelić J, Lazić L, Stojanović V. 2011. Characteristics of thermal–mineral waters in Backa region (Vojvodina) and their exploitation in spa tourism[J]. Renewable and Sustainable Energy Reviews, 15: 801−807. doi: 10.1016/j.rser.2010.09.004

    [36]

    Lee J M, Koh D C, Chae G T, Kee W S, Ko K S. 2021. Integrated assessment of major element geochemistry and geological setting of traditional natural mineral water sources in South Korea at the national scale[J]. Journal of Hydrology, 598: 126249. doi: 10.1016/j.jhydrol.2021.126249

    [37]

    Li Chengdong, Zhang Qi, Miao Laicheng, Meng Xianfeng. 2004. Mesozoic high−Sr, low−Y and low−Sr, low−Y types granitoids in the northern Hebei Province: Geochemistry and petrogenesis and its relation to mineralization of gold deposits[J]. Acta Petrologica Sinica, 20(2): 269−28 (in Chinese with English abstract).

    [38]

    Li L X, Li H M, Zi J W, Rasmussen B, Sheppard, Simon A W, Meng J. 2019. Role of fluids in Fe–Ti–P mineralization of the Proterozoic Damiao anorthosite complex, China: Insights from baddeleyite–zircon relationships in ore and altered anorthosite[J]. Ore Geology Reviews, 115: 103186. doi: 10.1016/j.oregeorev.2019.103186

    [39]

    Li Tong. 1976. Chemical element abundances in the Earth and it's major shells[J]. Geochimica, (3): 167−174 (in Chinese with English abstract).

    [40]

    Li X, Wei X F, Wu J, Yin Z Q, Wan L Q, Sun H Y, An Y L. 2022. Geochemical characteristics and growth suitability assessment of Scutellaria baicalensis Georgi in the Earth's critical zone of North China[J]. Journal of Mountain Science, 19(5): 1245−1262. doi: 10.1007/s11629-021-7015-9

    [41]

    Liu Congqiang. 2007. Biogeochemical Processes and Cycling of Uutrients in the Earth’s Surface: Cycling of Nutrients in Soil−plant System of Karstic Environments, Southwest China[M]. Beijing: Science Press (in Chinese).

    [42]

    Liu Hongtao, Sun Shihua, Liu Jianming, Zhai Mingguo. 2002. The Mesozoic high−Sr granitoids in the northern marginal region of NorthChina Craton: Geochemistry and source region[J]. Acta Petrologica Sinica, 18(3): 257−274 (in Chinese with English abstract).

    [43]

    Liu Jian. 2006. Yanshanian Tectonic Evolution of the Chengde Basin and the Adjacent Area in the Eastern Segment of the Yanshan Fold−and−thrust Belt[D]. Beijing: Chinese Academy of Geological Sciences (in Chinese with English abstract).

    [44]

    Liu J G, Cai R H, Pearson D G, Scott J M. 2019. Thinning and destruction of the lithospheric mantle root beneath the North China Craton: A reviews[J]. Earth−Science Review, 196: 102873. doi: 10.1016/j.earscirev.2019.05.017

    [45]

    Liu Junshuai, Zheng Jilin, Cai Yanlong, Wei Xiaoyong, Guo Xiaoyu, Wang Dake, Sun Jingyao, Yang Zhiwei. 2022. Geochemistry and resource potential evaluation of strontium−rich soil in Sanggan River Basin of Datong, Shanxi Province[J]. Geology and Resources, 31(5): 675−683, 692 (in Chinese with English abstract).

    [46]

    Liu Yonglin, Luo Kunli, Ni Runxiang, Wang Shaobin, Tian Xinglei, Wang Lin, Zhang Xiaojun, Gao Xing. 2013. High quality natural Li−rich and Sr−rich drinking−water in Yutian County, Xinjiang and its development Prospect[J]. Journal of Natural Resources, 28(12): 2150−2158 (in Chinese with English abstract).

    [47]

    Luo Junqiang, Wang Shijun, Bai Yang, Zheng Xiongwei, Zhang Yuanpei, Wu Yin, Zheng Guoqun, Hu Qing. 2019. Strontium in rice and its cumulative effect in the east of Zhongxiang City[J]. Resources Environment & Engineering, 33(4): 491−494 (in Chinese with English abstract).

    [48]

    Ma Yingjun. 1999. Trace Element and Strontium Isotope Geochemisty During Chemical Weatherig[D]. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences (in Chinese with English abstract).

    [49]

    Martins C A, Cerveira C, Scheffler G L, Pozebon D. 2015. Metal determination in tea, wheat, and wheat flour using diluted nitric acid, high−efficiency nebulizer, and axially viewed ICP OES[J]. Food Analytical Methods, 8(7): 1652−1660. doi: 10.1007/s12161-014-0044-z

    [50]

    Mason B, Moore C B. 1982. Principles of Geochemistry (Fourth Edition) [M]. Toronto, Canada: John Wiley & Sons, Inc.

    [51]

    Millour S, Noël L, Chekri R, Vastel C, Kadar A, Sirot V, Leblanc J C, Guérin T. 2012. Strontium, silver, tin, iron, tellurium, gallium, germanium, barium and vanadium levels in foodstuffs from the Second French Total Diet Study[J]. Journal of Food Composition and Analysis, 25(2): 108−129. doi: 10.1016/j.jfca.2011.10.004

    [52]

    Musgrove M. 2021. The occurrence and distribution of strontium in U. S. groundwater[J]. Applied Geochemistry, 126: 104867. doi: 10.1016/j.apgeochem.2020.104867

    [53]

    Nash W P, Crecraft H R. 1985. Partition coefficients for trace elements in silicic magmas[J]. Geochimica et Cosmochimica Acta, 49: 2309−2322. doi: 10.1016/0016-7037(85)90231-5

    [54]

    Peng H, Yao F F, Xiong S, Wu Z H, Niu G, Lu T T. 2021. Strontium in public drinking water and associated public health risks in Chinese cities[J]. Environmental Science and Pollution Research, 28: 23048−23059. doi: 10.1007/s11356-021-12378-y

    [55]

    Qi Lin. 2014. Accumulative Characteristics and Stress Responses of Triticeae Crops to Sr[D]. Gansu: Lanzhou University (in Chinese with English).

    [56]

    Qin Junfa, Rong Tingwen, Zhao Houshao, Ye Dehua, Wang Yun, Ma Jixiao, Bao Xuesheng, Jiao Donghai, Liu Xunchu. 1982. Energy dispersive X−ray analysis of trace elements in Chinese herbal medicine[J]. Chinese Traditional and Herbal Drugs, 13(9): 14−18 (in Chinese).

    [57]

    Qin Junfa, Ye Dehua, Wang Yun, Ma Jixiao, Bao Xuesheng. 1983. Energy dispersive X−ray analysis of trace elements in Chinese herbal medicine[J]. Chinese Traditional and Herbal Drugs, 14(11): 12−13 (in Chinese).

    [58]

    Qiu Lingcang, Pan Jun, Duan Binwu. 1993. The mineral nutrient component and characteristics of color and white, brown rice[J]. Chinese Journal of Rice Science, 7(2): 95−100 (in Chinese with English abstract).

    [59]

    Ren J Y, Tamaki K, Li S T, Zhang J J. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas[J]. Tectonophysics, 344(3−4): 175−205. doi: 10.1016/S0040-1951(01)00271-2

    [60]

    Rollinson H R. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation[M]. Londom, UK: Longman Group UK Ltd.

    [61]

    Rudnick R L, Gao S. 2003. Composition of the Continental Crust[M]. Holland H D, Turekian K K(eds.). Treatise on Geochemistry. Amsterdam, Netherlands and London, UK: Elsevier Ltd, 1−51.

    [62]

    Schroeder H A, Tipton I H, Nason A P. 1972. Trace metals in man: Strontium and barium[J]. Journal of Chronic Disease, 25(9): 491−517. doi: 10.1016/0021-9681(72)90150-6

    [63]

    Shao Wenjun. 2009. Determination of trace cobalt, copper, manganese, Strontium and zinc in pollen, ginseng and Raidx Astragali by ICP−MS[J]. Beverage Industry, 12(5): 24−26 (in Chinese with English abstract).

    [64]

    Shi Changyi, Liang Meng, Feng Bin. 2016. Average background values of 39 chemical elements in stream sediments of China[J]. Earth Science, 41(2): 234−251.

    [65]

    Shi Dan, Li Zhou. 2020. The Development Status and Trend of Beverage Industry in China[J]. Food and Fermentation Sciences & Technology, 56(4): 69−74 (in Chinese with English abstract).

    [66]

    Song Yuqin, Zhang Lixiao, Cao Shuyan. 2000. Study on Elements Composition of Two Kinds of Paddy in Horqin Sandland[J]. Journal of Desert Research, 20(Suppl.): 77−80 (in Chinese with English abstract).

    [67]

    Stanley C S. 1981. Handbook of Stable Strontium[M]. New York and London: Plenum Press.

    [68]

    Su Chuntian. 2021. Formation mechanism of Strontium−rich groundwater in Xintian County, Hunan Province[D]. Wuhan: China University of Geosciences (in Chinese with English abstract).

    [69]

    Sun H Y, Sun X M, Wei X F, Chen Z R, Zhang H Q. 2025. Occurrence and enrichment of phosphorus in the shallow aquifer of a Fe−V−Ti−P deposit headwater catchment: Insights from rock−weathering, hydrochemical and isotopic approaches[J]. Journal of Hydrology, 133557.

    [70]

    Sun H Y, Sun X M, Wei X F, Huang X K, Ke G Q, Wei H. 2023. Geochemical characteristics and origin of Nuanquanzi geothermal water in Yudaokou, Chengde, Hebei, North China[J]. Journal of Earth Science, 34(3): 838−856.

    [71]

    Sun Houyun, Ma Feng, Zhu Xi, Yu Mingxiao, Chen Ziran, Wei Xiaofeng. 2025. Hydrogeochemical evolution of geothermal fluids and its indications in the Yanshan uplift− North China fault basin, northern Hebei[J]. Acta Geologica Sinica, 99(5): 1711−1742.

    [72]

    Sun Houyun, Sun Xiaoming, Jia Fengchao, Wang Yanli, Li Duojie, Li Jian. 2020b. The eco−geochemical characteristics of germanium and its relationship with the genuine medicinal material Scutellaria baicalensis in Chengde, Hebei Province[J]. Geology in China, 47(6): 1646−1667 (in Chinese with English abstract).

    [73]

    Sun Houyun, Wei Xiaofeng, Gan Fengwei, Wang Heng, Jia Fengchao, He Zexin, Li Duojie, Li Jia, Zhang Jing. 2020a. Genetic type and formation mechanism of strontium−rich groundwater in the upper and middle reaches of Luanhe River basin [J]. Acta Geoscientica Sinica, 41(1): 65−79 (in Chinese with English abstract).

    [74]

    Sun Houyun, Wei Xiaofeng, Jia Fengchao, He Zexin, Sun Xiaoming. 2021b. Geochemical baseline and ecological risk accumulation effect of soilheavy metals in the small−scale drainage catchment of V− Ti− magnetitein the Yixun River basin, Chengde[J]. Acta Geologica Sinica, 95(2): 588−604 (in Chinese with English abstract).

    [75]

    Sun Houyun, Wei Xiaofeng, Sun Xiaoming, Jia Fengchao, Li Duojie, Li Jian. 2021a. Element migration and accumulation characteristics of Bedrock−Regolith−Soil−Fruit Plant Continuum of the Earth’s Critical Zone in Chengde almond producing area[J]. Earth Science, 46(7): 2621−2645 (in Chinese with English abstract).

    [76]

    Taylor S R. 1964. The abundance of chemical elements in the continental crust: A new table[J]. Geochimica et Cosmochimica Acta, 28: 1273−1285. doi: 10.1016/0016-7037(64)90129-2

    [77]

    Taylor S R, McLennan S M. 1985. The continental crust: Its composition and evolution[M]. London, UK: Blackwell Scientific Publications.

    [78]

    Varo P, Saari E, Paaso A, Koivistoinen P. 1982. Strontium in Finnish foods[J]. International Journal for Vitamin and Nutrition Research, 52(3): 342−350.

    [79]

    Vinogradov A P. 1962. Average concentration of chemical elements in the chief types of igneous rocks of thecrust of the Earth[J]. Geochemistry, 7: 555−571 (in Russian).

    [80]

    Wan Jialiang. 2012. Deformation and Geochronology of the Fengning−Longhua Fault Zone in Yanshan Intraplate Belt, North China[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences (in Chinese with English abstract).

    [81]

    Wang A H, Wang Z H, Liu J K, Xu N C, Li H L. 2021. The Sr/Ba ratio response to salinity in clastic sediments of the Yangtze River Delta[J]. Chemical Geology, 559: 1−17.

    [82]

    Wang Dan, Yan Jiali, Wang Mengyuan, Xia Wei, Zhou Wei, Zhang Yangyang. 2022. Study on content characteristics and influencing factors of selenium, strontium, germanium and zinc in Chinese herbal medicine in Enshi prefecture[J]. Resources Environment & Engineering, 36(5): 651−657 (in Chinese with English abstract).

    [83]

    Wang Dongxiao, Shui Haoche, Zeng Qingbo, Gu Hao, Wang Leil, Cao Wei. 2023. Discussion on soil strontium geochemical characteristics and soil rich standard of strontium: An example of Shihe river area in Gushi County of Henan[J]. Mineral Resources and Geology, 37(2): 360−370 (in Chinese with English abstract).

    [84]

    Wang Dongxiao, Yuan Dezhi. 2023. Strontium in soil−crop migration and enrichment and discussion on the standard of strontium enrichment in crops: taking the area of the Shihe River in Gushi, Henan as an example[J]. Geoscience, 37(3): 767−777 (in Chinese with English abstract).

    [85]

    Wang Jingbing, Wei Xiaofeng, Zhang Huiqiong, Gan Fengwei. 2020. The eco−geological survey based on geological formation, exemplified by integrated geological survey of National Ecological Civilization Demonstration Area in Chengde City, Hebei Province[J]. Geology in China, 47(6): 1611−1624 (in Chinese with English abstract).

    [86]

    Wang Meng. 2014. Origin of the Proterozoic Massif−type Nelsonite—A case study on the Damiao anorthosite complex, North China Craton[D]. Beijing: China University of Geosciences (Beijing) (in Chinese with English abstract).

    [87]

    Wang Sheng, Zhao Manxi, Guo Lanping, Yang Gung, Zhang Xiaobo, Chen Meilan, Lin Shufang, Huang Luqi. 2014. The contents of inorganic elements of Scutellaria baicalensis from different origins and its relationship with inorganic elements in relevant rhizosphere soil[J]. Acta Ecologica Sinica, 34(16): 4734−4745 (in Chinese with English abstract).

    [88]

    Wang Xuelian, Dong Dongxue, Ding Yanshuai, Fang Zaixi, Wang Linjiang, Wang Shujun, LÜ Mingsheng. 2022. Distribution and release of trace element strontium in aquatic products of Haizhou Bay[J]. Food Research and Development, 43(15): 182−186 (in Chinese with English abstract).

    [89]

    Wang Xueqiu, Liu Hanliang, Wang Wei. 2021. Geochemistry of Rare and Dispersed Elements in China[M]. Beijing: Science Press, 389−409.

    [90]

    Wang Xueqiu, Zhou Jian, Xu Shanfa, Chi Qinghua, Nie Lanshi, Zhang Bimin, YaoWensheng, Wang Wei, Liu Hanliang, Liu Dongsheng, Han Zhixuan, Liu Qingqing. 2016. China soil geochemical baselines networks: Data characteristics[J]. Geology in China, 43(5): 1469−1480 (in Chinese with English abstract).

    [91]

    Watts P, Howe P. 2010. Strontium and Strontium Compounds[M]. Geneva, Switzerland: World Health Organization.

    [92]

    Wedepohl K H. 1995. The composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 59(7): 1217−1232. doi: 10.1016/0016-7037(95)00038-2

    [93]

    Wei X F, Sun H Y, Chen Z R, Li X, Wei H, Jia W R, Li W. 2022. Element migration and enrichment characteristics of bedrock–regolith–soil–plant continuum system in the chestnut planting area, Chengde, China[J]. Acta Geochimica, 41(5): 839−860. doi: 10.1007/s11631-022-00544-z

    [94]

    Wei Xiaofeng, Sun Houyun, Zhang Jing, Li Xia, Fan Liuyang, He Zenxin. 2020. Eco−geochemical process of characteristic forest fruit resources and its significance of quality improvement in Chengde City[J]. Hydrogeology & Engineering Geology, 47(6): 99−108 (in Chinese with English abstract).

    [95]

    White A F, Schulz M M S, Vivity D V, Blum A E, Stonestrom D A, Anderson S P. 2008. Chemical weathering of a marine terrace chronosequence, Santa Cruz, California I: Interpreting rates and controls based on soil concentration–depth profiles[J]. Geochimica et Cosmochimica Acta, 72(1): 36−68. doi: 10.1016/j.gca.2007.08.029

    [96]

    Xi Xiaohuan, Hou Qingye, Yang Zhongfang, Ye Jiayu, Yu Tao, Xia Xueqi, Cheng Hangxin, Zhou Guohua, Yao Lan. 2021. Big data−based studies of the variation features of Chinese soil's background value versus reference value: A paper written on the occasion of Soil Geochemical Parameters of China's publication[J]. Geophysical and Geochemical Exploration, 45(5): 1095−1108 (in Chinese with English abstract).

    [97]

    Xi Xueyao, Gao Yanan, Wang Jiaqi, Zheng Nan. 2023. Osteogenic mechanism of strontium and research and development status of Strontium−rich foods[J]. Modern Food Science and Technology, 39(9): 380−392 (in Chinese with English abstract).

    [98]

    Xiao Xiao, Cui Yuanyuan, Zhang Tingdi, Zhang Xiuqin, Niu Zuojing, Liu Zhiguo, Wei Xiuli. 2022. Determination of strontium content in common vegetables in Shennongjia forest district and variation influential factors investigation[J]. Jourmal of Food Safety and Quality, 13(1): 208−216 (in Chinese with English abstract).

    [99]

    Xu H. 2009. Analysis of trace elements in Chinese Therapeutic Foods and Herbs[J]. The American Journal of Chinese Medicine, 37(4): 625−638. doi: 10.1142/S0192415X09007119

    [100]

    Xu Huan, Liu Yongqing, Liu Yanxue, Kuang Hongwei. 2011. Stratigraphy, sedimentology and tectonic background of basin evolution of the Late Jurassic−Early Cretaceous Tuchengzi Formation in Yinshan−Yanshan, North China[J]. Earth Science Frontiers, 18(4): 88−106. (in Chinese with English abstract

    [101]

    Yang G F, Zhuo S G, Wang B, Zhang J X, Xu X J. 2012. The types of thermal spring and its geological distributive characteristics in Yanshan orogenic belt, China[J]. Advanced Materials Research, 518−523: 5846−5850. doi: 10.4028/www.scientific.net/AMR.518-523.5846

    [102]

    Yang Siyu. 2019. Soil Geochemical Characteristics and Suitability Evaluation of Dingtao Yam Planting Area in Shandong Province[D]. Changchun: Jilin University (in Chinese with English abstract).

    [103]

    Yin Zhiqiang, Hao Aibing, Wu Aimin, Ren Jinwei, Zhou Ping, Wei Xiaofeng, Peng Ling, Li Xia, Shao Hai, Pang Jumei. 2021. The key progress in Chengde and the national proposal of the integrated survey of natural resources[J]. Geological Bulletin of China, 41(12): 2087−2096 (in Chinese with English abstract).

    [104]

    Zeinera M, Cindrić I J, Požgaj M, Pirkla R, Šilić T, Stingedera G. 2015. Influence of soil composition on the major, minor and trace metal content of Velebit biomedical plants[J]. Journal of Pharmaceutical and Biomedical Analysis, 106: 153−158. doi: 10.1016/j.jpba.2014.10.012

    [105]

    Zeng Yawen, Wang Luxiang, Du Juan, Yang Shuming, Wang Yuchen, Li Qiwan, Sun Zhenghai, Pu Xiaoying, Du Wei. 2009. Correlation of mineral elements between milled and brown rice and soils in Yunnan studied by ICP −AES[J]. Spectroscopy and Spectral Analysis, 29(5): 1413−1417 (in Chinese with English abstract).

    [106]

    Zhao Manxi, Lü Jinrong, Guo Lanping, Ge Xiaoguang, Song Liangke. 2010. Effects of inorganic elements of soil on contents of inorganic elements and baicalin in scutellaria[J]. Chinese Journal of Experimental Traditional Medical Formulae, 16(9): 103−106 (in Chinese with English abstract).

    [107]

    Zhao Yiyang, Yan Mingcai. 1994. Geochemistry of shallow sea sediments in China[M]. Beijing: Science Press.

    [108]

    Zhu Lixin, Ma Shengming, Wang Zhifeng. 2006. Soil eco−geochemical baseline in alluvial plains of eastern China[J]. Geology in China, 33(6): 1400−1405 (in Chinese with English abstract).

    [109]

    Zhu Xueqin, Liu Wenbo, Li Zhiming, Chen Tan, Ren Yuxiang, Shao Hai, Wang Longfeng. 2020. Distribution and characterization analyses of strontium−bearing mineral spring water in the Chengde region[J]. Hydrogeology & Engineering Geology, 47(6): 65−73 (in Chinese with English abstract).

    [110]

    安永龙, 刘东达, 王晓峰, 殷志强, 王爱军, 万利勤, 齐欢, 邵海. 2022. 新发展格局下市级自然资源“十四五”规划的思考——以河北省承德市为例[J]. 中国国土资源经济, 35(3): 66−72.

    [111]

    卜怡然, 吴礼邦, 黄强, 周毅德, 张秀琴, 高荣杰, 位秀丽, 刘志国. 2020. 神农架富锶植物资源调查研究[J]. 食品安全质量检测学报, 11(3): 932−937.

    [112]

    曹艳玲, 吴波, 范振华, 崔素, 刘倩然, 郭鹏, 王艳婷. 2021. 山东省定陶地区富锶土壤地质成因研究[J]. 山东国土资源, 37(1): 28−36

    [113]

    迟清华, 鄢明才. 2007. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社.

    [114]

    范庆杰, 韩建国, 项福星, 季志强. 2018. 承德地区酿酒专用高粱新品种引进与示范[J]. 园艺与种苗, 38(1): 51−54.

    [115]

    高山, 骆庭川, 张本仁, 张宏飞, 韩吟文, 赵志丹, HartmutKern. 1999. 中国东部地壳的结构和组成[J]. 中国科学(D辑: 地球科学), 29(3): 204−213.

    [116]

    顾尚义. 2001. 酸性火山岩风化壳氧化还原界面地球化学研究——以广西凭祥英安岩与蚀变流纹岩风化壳为例[D]. 贵阳: 中国科学院地球化学研究所.

    [117]

    管竞环, 李恩宽. 1998. 中医药理论量化与微量元素[M]. 武汉: 湖北科学技术出版社.

    [118]

    郭兰萍, 王升, 张霁, 杨光, 赵蔓茜, 马卫峰, 张小波, 李璇, 韩邦兴, 陈乃富, 黄璐琦. 2014. 生态因子对黄芩次生代谢产物及无机元素的影响及黄芩道地性分析[J]. 中国科学: 生命科学, 44(1): 66−74.

    [119]

    郭颖超, 孙志辉, 刘卫, 赵婧, 樊彦超, 景志华. 2023. 承德地区富锶土壤与农作物锶含量特征[J]. 矿产勘查, 14(7): 1289−1296.

    [120]

    韩娟, 郭燕枝. 2022. 中国富锶食品发展报告[M]. 北京: 中国轻工业出版社, 1−120.

    [121]

    韩深, 梁娜娜, 孔维恒, 古瑾, 高峰, 王珮玥, 刘萤. 2014. 赤霞珠葡萄酒中矿质元素的品种特点及其在产地鉴别中的应用[J]. 中国酿造, 33(12): 34−41. doi: 10.11882/j.issn.0254-5071.2014.12.007

    [122]

    侯青叶, 杨忠芳, 余涛, 夏学齐, 成航新, 周国华. 2020. 中国土壤地球化学参数[M]. 北京: 地质出版社, 1−1249.

    [123]

    胡江龙, 胡绍祥, 杨清富, 万能, 尹猛. 2019. 湖北随州北部富锶土壤地球化学特征及资源潜力评价[J]. 资源环境与工程, 33(3): 341−346,367.

    [124]

    黄胥莱, 高亚男, 张养东, 王加启, 郑楠. 2023. 食品中锶功能的研究进展[J]. 食品科学, 44(15): 397−406. doi: 10.7506/spkx1002-6630-20220712-133

    [125]

    姜涛. 2013. 酱香型白酒的原产地环境地球化学及其特征组分研究[D]. 贵阳: 中国科学院地球化学研究所.

    [126]

    黎彤. 1976. 化学元素的地球丰度[J]. 地球化学, (3): 167−174. doi: 10.3321/j.issn:0379-1726.1976.03.004

    [127]

    李承东, 张旗, 苗来成, 孟宪锋. 2004. 冀北中生代高Sr低Y和低Sr低Y型花岗岩: 地球化学、成因及其与成矿作用的关系[J]. 岩石学报, 20(2): 269−284. doi: 10.3969/j.issn.1000-0569.2004.02.009

    [128]

    刘丛强. 2007. 生物地球化学过程与地表物质循环——西南喀斯特流域侵蚀与生源要素循环[M]. 北京: 科学出版社.

    [129]

    刘红涛, 孙世华, 刘建明, 翟明国. 2002. 华北克拉通北缘中生代高锶花岗岩类: 地球化学与源区性质[J]. 岩石学报, 18(3): 257−274. doi: 10.3321/j.issn:1000-0569.2002.03.001

    [130]

    刘健. 2006. 燕山褶断带东段承德盆地及邻区燕山期构造演化[D]. 北京: 中国地质科学院.

    [131]

    刘军帅, 郑吉林, 蔡艳龙, 魏小勇, 郭晓宇, 王大可, 孙靖尧, 杨志伟. 2022. 山西大同桑干河流域富锶土壤地球化学特征及资源潜力评价[J]. 地质与资源, 31(5): 675−683,692.

    [132]

    刘永林, 雒昆利, 倪润祥, 王少彬, 田兴磊, 王林, 张晓, 高星. 2013. 新疆于田县优质富锂富锶天然饮用矿泉水及其开发前景[J]. 自然资源学报, 28(12): 2150−2158. doi: 10.11849/zrzyxb.2013.12.012

    [133]

    罗军强, 王世俊, 白洋, 郑雄伟, 张元培, 吴颖, 郑国权, 胡青. 2019. 钟祥市东部地区水稻中锶及其累积效应研究[J]. 资源环境与工程, 33(4): 491−494.

    [134]

    马英军. 1999. 化学风化作用中的微量元素和锶同位素地球化学[D]. 贵阳: 中国科学院地球化学研究所.

    [135]

    彭闯. 2018. 富锶肉驴产业化开发前景分析[J]. 现代畜牧科技, (10): 26−27.

    [136]

    亓琳. 2014. 麦类作物对锶的富集特征和生理响应[D]. 甘肃: 兰州大学.

    [137]

    秦俊法, 荣廷文, 张厚绍, 叶德华, 王韵, 马寄晓, 包雪生, 焦东海, 刘训初. 1982. 中草药中微量元素的能量色散X射线分析[J]. 中草药, 13(9): 14−18.

    [138]

    秦俊法, 叶德华, 王韵, 马寄晓, 包雪声. 1983. 中草药中微量元素的能量色散X射线分析[J]. 中草药, 14(11): 12−13.

    [139]

    裘凌沧, 潘军, 段彬伍. 1993. 有色米及白米矿质元素营养特征[J]. 中国水稻科学, 7(2): 95−100. doi: 10.3321/j.issn:1001-7216.1993.02.006

    [140]

    邵文军. 2009. 电感耦合等离子体质谱法(ICP−MS)测定花粉、人参、黄芪中微量钴、铜、锰、锶和锌[J]. 饮料工业, 12(5): 24−26. doi: 10.3969/j.issn.1007-7871.2009.05.007

    [141]

    史长义, 梁萌, 冯斌. 2016. 中国水系沉积物39种元素系列背景值[J]. 地球科学, 41(2): 234−251.

    [142]

    沈阳市锶泉酒厂. 1995. 锶泉白酒[P]. 中国: CN93112080.2.

    [143]

    沈阳市锶泉酒厂. 1996. 锶泉白酒及其制造方法[P]. 中国: CN94110400.1.

    [144]

    石丹, 李洲. 2020. 我国饮料产业发展现状与趋势[J]. 食品与发酵科技, 56(4): 69−74.

    [145]

    宋豫秦, 张力小, 曹淑艳. 2000. 科尔沁沙地衬膜与滩涂水稻主要营养元素分析[J]. 中国沙漠, 20(增刊): 77−80.

    [146]

    苏春田. 2021. 湖南新田县富锶地下水形成机理研究[D]. 武汉: 中国地质大学.

    [147]

    孙厚云, 马峰, 朱喜, 余鸣潇, 陈自然, 卫晓锋. 2025. 冀北燕山隆起−华北断陷盆地地热流体地球化学特征及地热学意义[J]. 地质学报, 99(5): 1711−1742.

    [148]

    孙厚云, 卫晓锋, 甘凤伟, 王恒, 贾凤超, 何泽新, 李多杰, 李健, 张竞. 2020a. 滦河流域中上游富锶地下水成因类型与形成机制[J]. 地球学报, 41(1): 65−79.

    [149]

    孙厚云, 孙晓明, 贾凤超, 王艳丽, 李多杰, 李健. 2020b. 河北承德锗元素生态地球化学特征及其与道地药材黄芩适生关系[J]. 中国地质, 47(6): 1646−1667.

    [150]

    孙厚云, 卫晓锋, 孙晓明, 贾凤超, 李多杰, 李健. 2021a. 承德杏仁产区关键带基岩−土壤−作物果实BRSPC系统元素迁聚特征[J]. 地球科学, 46(7): 2621−2645.

    [151]

    孙厚云, 卫晓锋, 贾凤超, 何泽新, 孙晓明. 2021b. 承德伊逊河钒钛磁铁矿小流域土壤重金属地球化学基线及生态风险累积效应[J]. 地质学报, 95(2): 588−604.

    [152]

    万加亮. 2012. 燕山地区丰宁—隆化断裂带构造变形与时代[D]. 北京: 中国科学院地质与地质物理研究所.

    [153]

    汪丹, 闫加力, 王梦园, 夏伟, 周伟, 张阳阳. 2022. 恩施州中草药硒、锶、锗、锌元素含量特征及其影响因素研究[J]. 资源环境与工程, 36(5): 651−657.

    [154]

    王东晓, 水浩澈, 曾庆波, 谷浩, 王雷, 曹伟. 2023. 土壤锶地球化学特征及土壤富锶标准探讨——以河南固始史河一带为例[J]. 矿产与地质, 37(2): 360−370.

    [155]

    王东晓, 袁德志. 2023. 锶在土壤−作物中迁移富集机制及作物富锶标准探讨: 以河南固始史河一带为例[J]. 现代地质, 37(3): 767−777.

    [156]

    王贵平, 杨成发, 薛晓敏, 王金政. 2022. 山东省沂源县‘富锶’苹果成因研究与分析[J]. 烟台果树, (1): 13−16. doi: 10.3969/j.issn.1005-9938.2022.01.006

    [157]

    王京彬, 卫晓锋, 张会琼, 甘凤伟. 2020. 基于地质建造的生态地质调查方法——以河北省承德市国家生态文明示范区综合地质调查为例[J]. 中国地质, 47(6): 1611−1624. doi: 10.12029/gc20200601

    [158]

    王萌. 2014. 元古宙斜长岩体型铁钛磷灰岩的成因研究[D]. 北京: 中国地质大学(北京).

    [159]

    王升, 赵曼茜, 郭兰萍, 杨光, 张小波, 陈美兰, 林淑芳, 黄璐琦. 2014. 不同产地黄芩中无机元素含量及其与根际土壤无机元素的关系[J]. 生态学报, 34(16): 4734−4745.

    [160]

    王雪莲, 董冬雪, 丁延帅, 方再郗, 王林江, 王淑军, 吕明生. 2022. 海州湾水产品体内微量元素锶的分布与释放研究[J]. 食品研究与开发, 43(15): 182−186.

    [161]

    王学求, 刘汉粮, 王玮. 2021. 中国稀有分散元素地球化学[M]. 北京: 科学出版社, 389−409.

    [162]

    王学求, 周建, 徐善法, 迟清华, 聂兰仕, 张必敏, 姚文生, 王玮, 刘汉粮, 刘东盛, 韩志轩, 柳青青. 2016. 全国地球化学基准网建立与土壤地球化学基准值特征[J]. 中国地质, 43(5): 1469−1480. doi: 10.12029/gc20160501

    [163]

    卫晓锋, 孙厚云, 张竞, 李霞, 樊刘洋, 何泽新. 2020. 承德特色林果资源的生态地球化学过程及其品质提升意义[J]. 水文地质工程地质, 47(6): 99−108.

    [164]

    奚小环, 侯青叶, 杨忠芳, 叶家瑜, 余涛, 夏学齐, 成杭新, 周国华, 姚岚. 2021. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 45(5): 1095−1108.

    [165]

    席雪瑶, 高亚男, 王加启, 郑楠. 2023. 锶的成骨机制及富锶食品的研发现状[J]. 现代食品科技, 39(9): 380−392.

    [166]

    肖潇, 崔媛媛, 张亭迪, 张秀琴, 牛作敬, 刘志国, 位秀丽. 2022. 神农架林区常见蔬菜锶含量测定及变化原因初探[J]. 食品安全质量检测学报, 13(1): 208−216. doi: 10.3969/j.issn.2095-0381.2022.1.spaqzljcjs202201028

    [167]

    许欢, 柳永清, 刘燕学, 旷红伟. 2011. 阴山—燕山地区晚侏罗世—早白垩世土城子组地层、沉积特征及盆地构造属性分析[J]. 地学前缘, 18(4): 88−106.

    [168]

    鄢明才, 迟清华. 1997. 中国东部地壳与岩石的化学组成[M]. 北京: 科学出版社.

    [169]

    杨思宇. 2019. 山东定陶山药种植区土壤地球化学特征研究及适宜性评价[D]. 长春: 吉林大学.

    [170]

    殷志强, 郝爱兵, 吴爱民, 任金卫, 周平, 卫晓锋, 彭令, 李霞, 邵海, 庞菊梅. 2022. 承德自然资源综合调查主要进展与全国自然资源综合调查总体思路[J]. 地质通报, 41(12): 2087−2096. doi: 10.12097/j.issn.1671-2552.2022.12.001

    [171]

    余亚芳. 2014. 一种富锌富锶黄酒的生产方法[P]. 中国: CN103789142A.

    [172]

    虞德容, 张启军. 2012. 水稻中锶的研究进展[J]. 江苏农业科学, 40(8): 79−81. doi: 10.3969/j.issn.1002-1302.2012.08.031

    [173]

    曾亚文, 汪禄祥, 杜娟, 杨树明, 王雨辰, 黎其万, 孙正海, 普晓英, 杜威. 2009. ICP−AES法检测云南稻精米和糙米与土壤矿质元素间的关联性[J]. 光谱学与光谱分析, 29(5): 1413−1417. doi: 10.3964/j.issn.1000-0593(2009)05-1413-05

    [174]

    赵金, 郑亚玉, 柴立, 任应全. 1996. 甘草富含锶的初步研究[J]. 贵阳中医学院学报, 18(1): 62.

    [175]

    赵曼茜, 吕金嵘, 郭兰萍, 格小光, 杨光, 宋良科. 2010. 土壤无机元素对黄芩无机元素及黄芩苷含量的影响[J]. 中国实验方剂学杂志, 16(9): 103−106. doi: 10.3969/j.issn.1005-9903.2010.09.032

    [176]

    赵一阳. 鄢明才. 1994. 中国浅海沉积物地球化学[M]. 北京: 科学出版社.

    [177]

    中国环境监测总站. 1990. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社.

    [178]

    朱立新, 马生明, 王之峰. 2006. 中国东部平原土壤生态地球化学基准值[J]. 中国地质, 33(6): 1400−1405. doi: 10.3969/j.issn.1000-3657.2006.06.025

    [179]

    朱雪芹, 刘文波, 李志明, 陈坦, 任玉祥, 邵海, 王龙凤. 2020. 承德地区天然含锶矿泉水空间分布及特征分析[J]. 水文地质工程地质, 47(6): 65−73.

  • 加载中

(5)

(5)

计量
  • 文章访问数:  156
  • PDF下载数:  10
  • 施引文献:  0
出版历程
收稿日期:  2023-09-12
修回日期:  2024-02-19
刊出日期:  2025-05-25

目录