Distribution, origin, industrial application status and prospecting prospect of gypsum in China
-
摘要:
研究目的 石膏是中国储量大且分布广的优势非金属矿产之一,其应用十分广泛。总结分析中国石膏的分布、成因、应用以及找矿前景对于石膏的可持续利用具有重要意义。
研究方法 本文从石膏矿床类型、时空分布、应用等方面入手,总结前人的研究成果以及收集相关资料,系统梳理了中国石膏的资源储量和矿山产量,提供了寻找新的石膏矿床的背景知识。
研究结果 2022年中国石膏资源保有储量为17.58亿t,安徽省保有储量最多,矿床类型为沉积型、后生型和热液型石膏、硬石膏矿床,其中以沉积型矿床为主。中国石膏资源主要用于建材、工业、农业以及医学等行业。对石膏的再生利用,有利于缓解中国石膏资源紧张的局面。但是在利用工业副产石膏时产生的问题也不容忽视,所以也要注重天然石膏的开发、利用与保护。
结论 石膏矿床形成主要受到气候、物源和构造的控制,封闭、半封闭的盆地,干旱、半干旱的气候条件以及充足的物质促进了石膏矿床的形成。祁连成矿带、天山—北山成矿带、西昆仑—阿尔金成矿带和长江中下游成矿带是中国石膏重要的成矿远景区。
Abstract:This paper is the result of mineral exploration engineering.
Objective Gypsum is one of the dominant nonmetallic minerals with large reserves and wide distribution in China, and its application is very wide. It is significant to summarize and analyse the distribution, source, application and prospect of Chinese gypsum for sustainable use.
Methods Starting from the types, temporal and spatial distribution and application of gypsum deposits, this paper summarizes the previous research results and collects relevant data, systematically combs the resource reserves and mine output of gypsum in China, and provides the background knowledge for searching for new gypsum deposits.
Results In 2022, the retained reserves of gypsum resources in China will be 1.758 billion tons, with the largest reserves in Anhui Province. The deposit types are sedimentary, epigenetic and hydrothermal gypsum and anhydrite deposits, among which sedimentary deposits are the main ones. China's gypsum resources are mainly used in building materials, industry, agriculture and medical industries. The regeneration and utilization of gypsum can help alleviate the tense situation of gypsum resources in our country. However, the problems caused by the use of industrial by−product gypsum can not be ignored, so we should also pay attention to the development, utilization and protection of natural gypsum.
Conclusions The formation of gypsum deposits is mainly controlled by climate, provenance and structure. Closed and semi-closed basins, arid and semi-arid climatic conditions and sufficient materials promote the formation of gypsum deposits. Qilian metallogenic belt, Tianshan−Beishan metallogenic belt, West Kunlun Altun metallogenic belt and middle and lower Yangtze metallogenic belt are important metallogenic prospect areas of gypsum in China.
-
-
图 5 海相台地蒸发岩、盆地蒸发岩成因示意图(据文华国等, 2021)
Figure 5.
图 6 蒸发岩分布类型(据Schmalz, 1969)
Figure 6.
图 7 大汶口盆地地质构造图(据朱猛, 2015)
Figure 7.
图 8 云应地区纤维石膏矿成矿模式图(据方明等, 2022)
Figure 8.
图 9 热液型石膏成因模式图(据Bain, 1990)
Figure 9.
图 10 程潮矿区典型地质剖面图(据宋许根等, 2018)
Figure 10.
图 11 2010—2022年中国磷石膏排放和利用情况(据杨再银, 2021)
Figure 11.
表 1 中国各省石膏矿床数量及资源总量统计(据自然资源部)
Table 1. Statistics of the quantity and total resources of gypsum deposits in China (after the Ministry of Natural Resources)
地区 主要地域 特大型 大型 中型 小型 总计 保有资源储量/亿t 资源储量占比/% 全国 35 217 173 537 962 17.58 华北地区 河北 0 9 7 16 32 1.16 6.59 山西 0 5 7 42 54 0.14 0.79 内蒙古 0 9 8 26 43 0.08 0.45 总计 0 23 22 84 129 1.38 7.8 东北地区 辽宁 0 2 2 3 7 0.19 1.08 吉林 1 0 5 28 34 0.08 0.45 总计 1 2 7 31 41 0.27 1.53 华东地区 江苏 1 15 5 1 22 安徽 2 24 9 8 43 3.59 20.42 江西 0 1 3 14 18 0.06 0.34 山东 12 29 23 40 104 2.57 14.61 总计 15 69 40 63 187 6.22 35.38 中南地区 河南 1 2 1 7 11 0.07 0.39 湖北 6 24 31 34 95 1.56 8.87 湖南 1 19 12 69 101 0.95 5.4 广西 2 2 0 10 14 0.04 0.22 广东 0 5 6 3 14 0.01 0.05 总计 10 52 50 123 235 2.63 14.96 西南地区 重庆 1 1 0 7 9 0.14 0.79 四川 0 12 4 45 61 1.81 10.29 贵州 1 3 2 14 20 云南 2 9 2 15 28 1.65 9.38 总计 4 25 8 81 118 3.6 20.47 西北地区 陕西 1 2 1 6 10 0.76 4.32 甘肃 1 7 16 25 49 0.33 1.87 青海 0 10 10 21 41 宁夏 1 13 8 43 65 1.27 7.22 新疆 2 14 11 60 87 1.11 6.31 总计 5 46 46 155 252 3.47 17.58 表 2 中国已统计的石膏矿床类型数量(据全国矿产地数据库)
Table 2. The number of gypsum deposit types in China (after the National Mineral Resources Database)
地区 沉积型/个 后生型/个 热液型/个 河北 15 2 山西 10 3 内蒙古 20 辽宁 3 吉林 21 江苏 17 安徽 29 12 江西 14 1 山东 61 1 河南 5 1 湖北 27 1 12 湖南 33 5 广西 6 6 广东 13 重庆 6 1 四川 19 1 贵州 13 3 云南 28 2 陕西 3 甘肃 32 1 青海 30 2 宁夏 35 新疆 55 4 全国总计 495 19 39 占比/% 89.5 3.4 7.1 表 3 中国部分特大型、大型石膏矿(据董斌, 1990; 刘晓等, 2020)
Table 3. Some extra-large and large gypsum mines in China (after Dong Bin, 1990; Liu Xiao et al., 2020)
类型 矿床名称 产地 规模 时代 海相沉积 辛集石膏矿 河南省鲁山县 特大型 早寒武世 瓦刀子石膏矿 陕西省西乡县 特大型 早三叠世 河南省袁家庄石膏矿床 河南省汝州市 特大型 早寒武统 小南海—李家庄石膏矿 河南省安阳县 大型 中奥陶世 邵阳县常乐石膏矿 湖南省邵阳县 大型 早石炭世 小红山石膏矿 宁夏回族自治区中卫市 大型 早石炭世 东京陵石膏矿 辽宁省辽宁市 大型 早寒武世 阿其克石膏矿 新疆维吾尔自治区洛浦县 大型 早二叠世 湖湘沉积 麻城铺石膏矿 湖北省荆门市 特大型 晚白垩世 新城石膏矿 甘肃省临潭县 大型 古近纪 安棚石膏矿 河南省桐柏县 大型 古近纪 盛家滩石膏矿 湖北省应城市 大型 古近纪 上五通石膏矿床 湖南省石门县 大型 古近纪 鲁家沟石膏矿床 甘肃省天祝县 大型 早石炭世 后河石膏矿 湖北省利川市 大型 早三叠世 北山寺—泮子山石膏矿 青海省西宁市 大型 古近纪 八里张石膏矿 安徽省定远县 大型 古近纪 邹庄石膏矿 江苏省邳州市 大型 古近纪 表 4 东京陵石膏矿床地质特征(据张连强和张欢, 2018)
Table 4. Geological characteristics of Tokioling Gypsum Deposit (after Zhang Lianqiang and Zhang Huan, 2018)
石膏层位 产出层位 矿石类型 形态 岩性 矿物成分 平均品位 顶板 底板 硬石膏 石膏 Ⅰ(Ⅰ1+Ⅰ2+Ⅰ3) ∈1m 硬石膏型 稳定层状 砖红色白云质泥岩 紫红色泥白云岩 >95% 7.16% 68.41% Ⅳ(Ⅳ1+Ⅳ2) ∈1m 较稳定层状 砖红色白云质泥岩 含膏白云岩 4.5% 64.37% Ⅴ ∈1j 稳定层状 石灰岩中 2.3% 89.67% 注:东京陵石膏矿床勘查显示Ⅱ、Ⅲ膏层不具工业意义。 表 5 云应地区同后生沉积纤维石膏层脉矿床成因(据方明等, 2022)
Table 5. Genetics of synepigenetic sedimentary fibrous gypsum vein deposit in Yunying area (after Fang Ming et al., 2022)
层位 岩性 物质来源及基础 成矿机理 E2b古近系始新统白沙口组 赭红色灰质黏土质粉砂岩、细砂岩为主,其中夹有较多团块状泥质石膏,向下逐步变为成分单一的砂岩、含砾砂岩 蓝灰色含石膏岩石与泥岩呈复薄层,与中—厚层赭色泥质粉砂岩互层,存在能干性差异成矿空间与矿液运移:位态调整、盆地不均衡沉降重力调整产生层脉为主的成矿空间,地压使原生沉积物脱(卤)水上移,承压埋藏卤水参与层间裂隙的生成并结晶成脉 含云质、灰质黏土矿物的分子筛作用,使承压埋藏卤水中的Na+、K+及Cl–等小半径离子流失,Mg2+、CO32–先期在通道(穿层裂隙或网脉)中结晶,Ca2+、SO42–等大离子在层间裂隙中结晶 E2g1-1 古近系始新统膏盐组下含硬石膏岩段下含矿层 赭红色泥质–细碎屑岩与灰(蓝)色灰云膏粉砂质泥岩不等厚互层,发育纤维石膏层75~156层 E2g1-2 古近系始新统膏盐组下含硬石膏岩段红层 厚层赭红色泥质粉砂岩为主,少量的细砂岩、泥岩 E2g1-3 古近系始新统膏盐组下含硬石膏岩段上含矿层 赭红色泥质–细碎屑岩与灰(蓝)色灰云膏粉砂质泥岩不等厚互层,发育纤维石膏层64~136层 E2g2 古近系始新统膏盐组下含钙芒硝岩段 中—厚层赭红色含砾泥质粉砂岩为主夹有细砂岩,夹灰(蓝)色薄—纹层泥质粉砂岩及团块状、星点状泥质石膏 表 6 石膏主要用途(据李逸晨, 2019)
Table 6. Main uses of gypsum (after Li Yichen, 2019)
应用领域 主要用途 建材工业 水泥添加剂 制造水泥 作为添加剂或活性激发剂 胶凝材料 石膏及复合胶凝材料 建筑制品 石膏隔墙板复合内板、墙体砌块、空心条板、石膏砖 装饰石膏板、装饰制品、石膏陶瓷制品 墙体覆面板、天花板 粉刷石膏、自流平地面石膏、粘结石膏 石膏刮墙腻子、石膏嵌缝腻子 建筑卫生陶瓷模具 化学工业 硫酸联产水泥、油漆腻子及填充料、硫酸氨化肥 农业 水稻施肥、改良盐碱土 工业模具 齿科用超硬石膏 精密制造模具、金银饰品及铝合金模具 飞机、汽车、机床工业中高标准的模具 日用陶瓷模具、高级卫生陶瓷模具 医药 石膏固定装置 中药 艺术模型 建筑艺术中装饰工艺 其他 填料、日用化工、轻工食品工业、饲料添加剂 表 7 中国石膏产业主要企业产能
Table 7. Production capacity of major enterprises in Chinese gypsum industry
企业 产品种类 产能 贵州磷化集团(开迪绿色建筑材料有限公司) 无水石膏 30万t/年 北新建材 石膏板 28.24亿m2/年 东方雨虹 抹灰石击、自流平石膏、嵌缝石膏等 3万t/年 德国必优集团(山东泰阳建材有限公司) 轻质抹灰石音 20万t/年 宁国恒基伟业建材有限公司 纸面石膏板 4000万m2/年 圣戈班石膏建材(上海)有限公司 石膏粉 145万t/年 云南镟淦科技有限公司 β半水石膏粉 70万t/年 石膏砂浆 40万t/年 石膏砌块 50万m2/年 石膏条板 50万m2/年 瓮福紫金公司 石膏粉 20万t/年 聚义集团(晋宝灵石膏制制品有限公司) 天然石膏粉 30万t/年 泰山石膏有限公司 纸面石膏板 20亿m2/年 三泰控股 磷石膏 200万t/年 -
[1] Bai Shouchang. 1984. Triassic gypsum prospecting direction in the middle and lower reaches of Yangtze River[J]. Non–metallic Mines, (4): 1−4 (in Chinese).
[2] Bain R J. 1990. Diagenetic, nonevaporative origin for gypsum[J]. Geology, 18(5): 447−450. doi: 10.1130/0091-7613(1990)018<0447:DNOFG>2.3.CO;2
[3] Charola A E, Pühringer J, Steiger M. 2007. Gypsum: A review of its role in the deterioration of building materials[J]. Environmental Geology, 52: 339−352. doi: 10.1007/s00254-006-0566-9
[4] Chen Guofang, Xie Feiyue. 2007. Discussion on genesis of gypsum deposit in Xishan, Taiyuan[J]. Taiyuan Science and Technology, (10): 77−78 (in Chinese).
[5] Deng Yangyang, Chen Congxin, Xia Kaizong, Zheng Xianwei. 2019. Cause analysis of surface collapse in western Chengchao Iron Mine[J]. Journal of Rock and Soil Mechanics, 40(2): 743−758 (in Chinese with English abstract).
[6] Dong Bin. 1990. Brief analysis of hydrogeological conditions and their effects in the Wutong gypsum mining area, Shimen County[J]. Hunan Geology, 9(2): 62−67 (in Chinese with English abstract).
[7] Duan Qingkui, Dong Wenliang, Wang Huiqin, Wang Liming. 2001. Research and development of α–type ultra–high strength gypsum (K–type gypsum)[J]. Non–metallic Mines, (3): 26−27 (in Chinese).
[8] Fang Ming, Yang Zaixi, Xu Jialin, Leng Fangrui. 2022. Geological characteristics of gypsum ore in Yingcheng Paste mining area, Hubei Province[J]. Chinese Science and Technology Journal Database (Full–text Edition) Engineering and Technology, (8): 65−68 (in Chinese with English abstract).
[9] Fantilli A P, Jóźwiak–Niedźwiedzka D, Denis P. 2021. Bio–fibres as a reinforcement of gypsum composites[J]. Materials, 14(17): 4830. doi: 10.3390/ma14174830
[10] Gao K, Wang F, Zhang M, Zhang J, Jiao D, Xu Q, Guan J, Zhang X, Liu Z, Zhang Z. 2021. High–strength and multi–functional gypsum with unidirectionally porous architecture mimicking wood[J]. Chemical Engineering Journal Advances, 7: 100114. doi: 10.1016/j.ceja.2021.100114
[11] Gong Daxing. 2016. The Triassic Salt–forming Environment, Potash–forming Conditions and Genetic Mechanism in Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 1–152 (in Chinese with English abstract).
[12] Guan Shaozeng, Jiang Zonglong, Wei Dongyan, Yang Liping, Xuan Zhiqiang, Chen Yancheng, Cui Tianxiu, Liu Zhenmin, Deng Xiaolin, Yin Xuemin. 1996. Plate tectonics and salt minerals in China[J]. Chemical Mineral Geology, 18(2): 2−10 (in Chinese with English abstract).
[13] Guo Dajiang, Yuan Yunfa, Hu Haoran, Zhang Bing. 2010. Properties of desulfurized gypsum and its application in Portland cement[J]. Bulletin of Silicate, 29(2): 357−360 (in Chinese with English abstract).
[14] Hao Rui'e, Xing Xiangfen, Peng Mingzhang, Zhu Limin, Du Xiaoliang, Liu Haiyan, Li Xiaojing, Wang Meng. 2023. Analysis of engineering geological conditions in Dawenkou Gypsum mine, Shandong Province[J]. Coal Geology of China, 35(8): 17−25 (in Chinese with English abstract).
[15] Hua Zhexin. 2018. Distribution of gypsum deposits and analysis of typical deposits in China[J]. Natural Science (Abstract Edition), (2): 222−223 (in Chinese).
[16] Huang Bin. 2005. Experience of Professor Xu Fuye in treating exogenous hyperthermia with gypsum[J]. Chinese Journal of Emergency Medicine, (9): 868 (in Chinese).
[17] Jia R, Wang Q, Feng P. 2021. A comprehensive overview of fibre–reinforced gypsum–based composites (FRGCs) in the construction field[J]. Composites Part B: Engineering, 205: 108540. doi: 10.1016/j.compositesb.2020.108540
[18] Jiang Chunzhi, Dong Fengzhi. 2016. Comprehensive utilization and research progress of industrial by–product gypsum[J]. Shandong Chemical Industry, 45(9): 42−44,47 (in Chinese with English abstract).
[19] Lai Ruijuan. 2017. Geochemical Characteristics and Development Mechanism of Gypsum (Rock) Minerals in the Jinding Baicaofao Strontium Deposit, Lanping, Northwest Yunnan[D]. Kunming: Kunming University of Science and Technology, 1–109 (in Chinese with English abstract).
[20] Li Ailing. 2004 Research progress on the development and utilization of Run–gypsum[J]. Mineral Resources and Geology, (5): 498–501 (in Chinese with English abstract).
[21] Li Qilin, Zhang Xiaolin, Li Zuowu, Zhang Lei. 2022. Geological characteristics and genetic analysis of Kuerchu gypsum mine in Xinjiang[J]. China Non–metallic Mineral Industry Guide, (4): 53−57 (in Chinese with English abstract).
[22] Li Wei, Gui Qing, Zhu Qiaoqiao, Zheng Xianwei, Zhang Zhiyuan, Han Yingxiao. 2016. Multiple episodes of mineralization in the Chengchao iron deposit, southeastern Hubei: Evidence from magnetite[J]. Acta Petrologica Sinica, 32(2): 471−492 (in Chinese with English abstract).
[23] Li Yichen. 2019. Development status and trend of gypsum industry[J]. Sulfuric Acid Industry, (11): 1−7,13 (in Chinese with English abstract).
[24] Li Z X, Wang X, Yan W L, Ding L N, Liu J X, Wu Z S, Huang H. 2023. Physical and mechanical properties of gypsum–based composites reinforced with basalt, glass, and PVA fibers[J]. Journal of Building Engineering, 64: 105640. doi: 10.1016/j.jobe.2022.105640
[25] Liu Chenglin, Xuan Zhiqiang, Cao Yangtong, Wang Licheng, Wang Chunlian, Zhao Yanjun, Zhang Hua. 2015. Exploration for potassium in the Chinese landmass: potassic formation and model in the East Tethys Domain of China[J]. Chemical and Mineral Geology, (4): 193−197 (in Chinese with English abstract).
[26] Liu H, Tan X, Li Y, Cao J, Luo B. 2018. Occurrence and conceptual sedimentary model of Cambrian gypsum–bearing evaporites in the Sichuan Basin, SW China[J]. Geoscience Frontiers, 9: 1179−1191. doi: 10.1016/j.gsf.2017.06.006
[27] Liu S, Liu W, Jiao F, Qin W Q, Yang C R. 2021. Production and resource utilization of flue gas desulfurized gypsum in China: A review[J]. Environmental Pollution, (5): 117799.
[28] Liu Weihong, Li Xiangxi, Zhang Ying. 1993. An approach to the controlling factors of the carboniferous gypsum deposits in central Hunan[J]. Sedimentary Geology and Tethyan Geology, 13(4): 12−18 (in Chinese with English abstract).
[29] Liu Xiao, Liu Chaoyang, Fan Tianjia, Zhang Xiuyun, Weng Hongbo, Zhang Huan. 2020. Geological characteristics and genesis of the Yuanjiazhuang gypsum deposit, Henan Province[J]. China Industrial Minerals Journal, (3): 37−41 (in Chinese with English abstract).
[30] Lu Zhicheng. 1983. Genetic types of gypsum deposits in China[J]. Geological Review, 29(5): 457 (in Chinese).
[31] Luo Dayou. 1985. Cambrian gypsum deposit in Liaoji Marine Deposit[J]. Mineral Deposit Geology, 4(3): 85−94 (in Chinese with English abstract).
[32] Luo Shuwen, Li Po, Chen Weihai, Wei Yuelong, Ouyang Zhihong, Deng Yadong, Qin Xingming. 2019. Phylogenetic mechanism and evolution of Shuanghe Karst Cave in Suiyang, Guizhou[J]. Journal of Chongqing Normal University (Natural Science Edition), 36(1): 111−118,144 (in Chinese with English abstract).
[33] Lü Xianhe, Gao Tingchen, Chen Junkui, Chen Ruibao, Cheng Xingguo, Hu Xiaochuan, Cai Zhongming. 2011. Geological characteristics of gypsum deposit and its indicative significance for sulfide deposit[J]. Chinese Journal of Geology, 35(1): 11−14 (in Chinese with English abstract).
[34] Maiti S, Jain N, Malik J, Baliyan A. 2023. Light weight plasters containing vermiculite and FGD gypsum for sustainable and energy efficient building construction materials[J]. Journal of The Institution of Engineers (India): Series A, 104(3): 603−614. doi: 10.1007/s40030-023-00736-7
[35] Ma Zhiqiang. 2000. Development and utilization of gypsum resources in Ningxia[J]. China Non–Metallic Mineral Industry Guide, (6): 31−34 (in Chinese with English abstract).
[36] Mesić M, Brezinščak L, Zgorelec Ž, Perčin A, Šestak I, Bilandžija D, Trdenić M, Lisac H. 2016. The application of phosphogypsum in agriculture[J]. Agriculturae Conspectus Scientificus, 81(1): 7−13.
[37] Pedreño–Rojas M A, Fořt J, Černý R. 2020. Life cycle assessment of natural and recycled gypsum production in the Spanish context[J]. Journal of Cleaner Production, 253: 120056. doi: 10.1016/j.jclepro.2020.120056
[38] Pei Yongwan, Lu Jie. 2007. Geological characteristics of Tokioling gypsum deposit in Liaoyang City[J]. China Non–metallic Mineral Industry Guide, (4): 59−62 (in Chinese with English abstract).
[39] Qin Shouping, Gao Mingbo, Zhu Guoqing, Chen Zhiqiang, Qin Wenjing. 2008. Geological characteristics and genetic analysis of Wujiaxinzhuang gypsum mine in Wenkou Basin, Taian[J]. Shandong Land and Resources, 24(4): 29−32 (in Chinese with English abstract).
[40] Qin Zhi’an, Li Junjian. 2005. Geological characteristics of the Non-metal ore deposits in Circum–Bohai–Sea Region[J]. Geological Survey and Research, 28(4): 265−271 (in Chinese with English abstract).
[41] Schmalz R F. 1969. Deep–water evaporite deposition: A genetic model[J]. AAPG Bulletin, 53(4): 798−823.
[42] Shi Houli, Zhang Peng, Jiang Yunyun 2016. Geochemical characteristics of evaporite in Dawenkou Basin, Shandong Province and its indication for potassium discovery[J]. Shandong Land and Resources, 32(6): 41–45 (in Chinese with English abstract).
[43] Song Chenzhen. 2009. Characteristics of carbonate rocks and gypsum prospecting in Tonkin Ling Gypsum deposit, Liaoning Province[J]. Liaoning Building Materials, (5): 13−14 (in Chinese).
[44] Song Xugen, Liu Xiumin, Chen Congxin, Zheng Xianwei, Xia Kaizong, Yang Kuoyu, Chen Shan. 2018. Preliminary study on surface subsidence mechanism and deformation law of goaf in western mining area of Chengchao Iron Mine[J]. Chinese Journal of Rock Mechanics and Engineering, 37(A2): 4262−4273 (in Chinese with English abstract).
[45] Sultana R, Rashedi A, Khanam T, Jeong B, Hosseinzadeh–Bandbafha H, Hussain M. 2022. Life cycle environmental sustainability and energy assessment of timber wall construction: A comprehensive overview[J]. Sustainability, 14(7): 4161. doi: 10.3390/su14074161
[46] Tao Weiping. 1983. Triassic gypsum deposit in Marine deposits in China[J]. Acta Geologica Sinica, (2): 172−183 (in Chinese with English abstract).
[47] Tao J, Wu L, Liu X, Zhang H, Xu Y, Gu W, Li Y. 2019. Effects of continuous application flue–gas desulfurization gypsum and brackish ice on soil chemical properties and maize growth in a saline soil in coastal area of China[J]. Soil Science and Plant Nutrition, 65(1): 82−89. doi: 10.1080/00380768.2018.1531355
[48] Wang B, Pan Z, Du Z, Cheng H, Cheng F. 2019. Effect of impure components in flue gas desulfurization (FGD) gypsum on the generation of polymorph CaCO3 during carbonation reaction[J]. Journal of Hazardous Materials, 369: 236−243. doi: 10.1016/j.jhazmat.2019.02.002
[49] Wang Wenkai, Xu Guoming, Song Xiaobo, Long Ke, Chen Ying. 2017. Origin of gypsum salt and its oil–gas significance in Minikoupo Formation, Sichuan Basin[J]. Journal of Chengdu University of Technology (Science and Technology Edition), 44(6): 697−707 (in Chinese with English abstract).
[50] Wang Y, Wang Z, Liang F, Liang F, Jing, X, Feng W. 2021. Application of flue gas desulfurization gypsum improves multiple functions of saline–sodic soils across China[J]. Chemosphere, 277: 130345. doi: 10.1016/j.chemosphere.2021.130345
[51] Wang Yanting, Liu Yankui, Wang Dong, Yu Chao. 2014. Geological characteristics and genetic analysis of Wangzhuang Section of Dawenkou Gypsum mine, Tai 'an[J]. China Non–metallic Mineral Industry Guide, (5): 42−44,62 (in Chinese with English abstract).
[52] Wang Ziju, Li Qiang, Li Zongcheng. 2003. Mineral product demand prediction and development suggestions for gypsum mineral resource potential evaluation in Dawenkou Basin, Tai'an City, Shandong Province[J]. Shandong Land and Resources, (5): 23−25 (in Chinese with English abstract).
[53] Warren J K. 2010. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits[J]. Earth–Science Reviews, 98: 217−268.
[54] Warren J K. 2016. Evaporites: A Geological Compendium[M]. Switzerland: Springer.
[55] Wen Huaguo, Huo Fei, Guo Pei, Ning Meng, Liang Jintong, Zhong Yijiang, Su Zhongtang, Xu Wenli, Liu Sibing, Wen Longbin, Jiang Huachuan. 2021. Research progress and prospect of dolomite–evaporite symbiotic system[J]. Journal of Sedimentology, 39(6): 1321−1343 (in Chinese with English abstract).
[56] Wu Yun. 2019. Geological Characteristics, Genesis and Metallogenic Prediction of the Gypsum Deposits in Liaoning Province[D]. Changchun: Jilin University, 1–105 (in Chinese with English abstract).
[57] Xiao J, Lu T, Zhuang Y, Jin H. 2022. A novel process to recover gypsum from phosphogypsum[J]. Materials, 15(5): 1944. doi: 10.3390/ma15051944
[58] Xie F Q, Wu Q H, Wang L D, Shi Z X, Zhang C, Liu B, Wang C, Shu Z X, Di H. 2019. Passive continental margin basins and the controls on the formation of evaporites: A case study of the Gulf of Mexico Basin[J]. Carbonates & Evaporites, 34(2): 405−418.
[59] Xie F Q, Sun Y H, Wu J Z, Jia W J. 2021. Nature and formation of evaporites in the passive continental margin period of the Sichuan Basin, China: a review[J]. Arabian Journal of Geosciences, 14(14): 1−13.
[60] Xie Lili, Meng Fanwei, Zhuo Qigong, Zhang Guoquan. 2023. Geochemical characteristics and genesis of lithic salt in Dawenkou Basin, Shandong Province[J]. Salt Lake Research, 31(3): 59−68 (in Chinese with English abstract).
[61] Xu Xingguo, Xiong Changquan. 1987. Preliminary analysis on preservation and hydration conditions of Lower Middle Triassic gypsum deposit in eastern Sichuan[J]. Building Materials Geology, (2): 20−24 (in Chinese).
[62] Xue Ping. 1985. Study on some metallogenic regularity of Middle Ordovician gypsum deposit in North China[J]. China Non–metallic Mineral Industry Guide, (4): 26−31,16 (in Chinese).
[63] Xue Wu. 1986. Preliminary study on the spatiotemporal distribution and metallogenic characteristics of gypsum minerals in China[J]. China Non–metallic Mineral Industry Guide, (4): 31−35 (in Chinese).
[64] Yang B, Dong Y, Wang B N, Yang M M, Yang C J. 2019. A mild alcohol–salt route to synthesize α–hemihydrate gypsum microrods from flue gas desulfurization gypsum in large scale[J]. Materials Research Express, 6(4): 045507. doi: 10.1088/2053-1591/aafc0e
[65] Yang Hui. 2022. Functions and research progress of common pharmaceutical nonmetallic minerals[J]. Chinese Non–metallic Mineral Industry Guide, (4): 1−3,7 (in Chinese).
[66] Yang Zaiyin. 2021. Utilization status of industrial by–product gypsum in China and prospects for the 14th Five–Year Plan[J]. Sulfuric Acid Industry, (7): 1−4,23 (in Chinese).
[67] Yin T T, Li S J. 2022. Application of sulfur isotopes for analyzing the sedimentary environment of evaporite in low–altitude intermountain basins: A case study on the Kumishi basin, Northwest China[J]. Carbonates & Evaporites, 37(1): 1−13.
[68] Zhang Fanfan, Chen Chao, Zhang Xixing, Xiang Lixue. 2017. Performance characteristics and application analysis of gypsum from different sources[J]. Inorganic Salt Industry, 49(8): 10−13 (in Chinese with English abstract).
[69] Zhang Lianqiang, Zhang Huan. 2018. Geological characteristics and metallogenic regularity of gypsum deposits in Liaoyang Basin, Liaoning Province[J]. China Non–metallic Mineral Industry Guide, (1): 47−50 (in Chinese).
[70] Zhang Shaoyun, Zhou Zhongfa, Tian Zhonghui. 2017. Environmental significance of water chemical characteristics of gypsum geode under paste salt layer[J]. Science Technology and Engineering, 17(16): 13−20 (in Chinese with English abstract).
[71] Zheng Tao. 2013. Status quo of gypsum mineral resources in China[J]. Heilongjiang Science and Technology Information, (23): 115 (in Chinese).
[72] Zheng Tao, Wen Canguo. 2013. Metallogenic analysis of Cambrian gypsum in Northeast China[J]. Private Science and Technology, (9): 35 (in Chinese).
[73] Zheng Ximin, Yang Liu, Yi Dinghong, Wang Pu. 2019. Paleogene gypsum and its sulfur isotope distribution in western Qaidam Basin[J]. Sedimentary and Tethian Geology, 39(4): 65−70 (in Chinese with English abstract).
[74] Zhou J, Li X, Zhao Y, Shu Z, Wang Y, Zhang Y, Shen X. 2020. Preparation of paper–free and fiber–free plasterboard with high strength using phosphogypsum[J]. Construction and Building Materials, 243: 118091. doi: 10.1016/j.conbuildmat.2020.118091
[75] Zhu Meng. 2015. Discussion on geological origin of salt deposits in Dawenkou Basin, Shandong Province[J]. Shandong Land and Resources, 31(1): 27−30 (in Chinese with English abstract).
[76] 白寿昌. 1984. 长江中下游三叠纪石膏找矿方向[J]. 非金属矿, (4): 1−4.
[77] 陈国芳, 谢飞跃. 2007. 太原西山石膏矿床成因探讨[J]. 太原科技, (10): 77−78.
[78] 邓洋洋, 陈从新, 夏开宗, 郑先伟. 2019. 程潮铁矿西区地表塌陷成因分析[J]. 岩土力学, 40(2): 743−758.
[79] 董斌. 1990. 石门县上五通石膏矿区水文地质条件及其作用浅析[J]. 湖南地质, 9(2): 62−67.
[80] 段庆奎, 董文亮, 王惠琴, 王立明. 2001. α型超高强石膏(K型石膏)研究与开发[J]. 非金属矿, (3): 26−27. doi: 10.3969/j.issn.1000-8098.2001.03.010
[81] 方明, 杨载熙, 徐加林, 冷方睿. 2022. 湖北省应城膏矿区石膏矿地质特征[J]. 中文科技期刊数据库(全文版)工程技术, (8): 65−68.
[82] 龚大兴. 2016. 四川盆地三叠纪成盐环境、成钾条件及成因机制[D]. 成都: 成都理工大学, 1–152.
[83] 关绍曾, 江宗龙, 魏东岩, 杨流平, 宣之强, 陈延成, 崔天秀, 刘振敏, 邓小林, 尹学敏. 1996. 中国板块构造与盐类矿产[J]. 化工矿产地质, 18(2): 2−10.
[84] 郭大江, 袁运法, 胡浩然, 张冰. 2010. 脱硫石膏性能研究及其在普通硅酸盐水泥中的应用[J]. 硅酸盐通报, 29(2): 357−360.
[85] 郝瑞娥, 邢香粉, 彭明章, 朱礼敏, 杜小亮, 刘海燕, 李晓静, 王猛. 2023. 山东大汶口石膏矿区工程地质条件分析[J]. 中国煤炭地质, 35(8): 17−25. doi: 10.3969/j.issn.1674-1803.2023.08.04
[86] 化志新. 2018. 中国石膏矿分布规律及典型矿床分析[J]. 自然科学(文摘版), (2): 222−223.
[87] 黄彬. 2005. 徐富业教授应用石膏治疗外感高热经验撷要[J]. 中国中医急症杂志, (9): 868.
[88] 姜春志, 董风芝. 2016. 工业副产石膏的综合利用及研究进展[J]. 山东化工, 45(9): 42−44,47. doi: 10.3969/j.issn.1008-021X.2016.09.017
[89] 来瑞娟. 2017. 滇西北兰坪金顶白草坪锶矿床石膏(岩)矿物地球化学特征及发育机制[D]. 昆明: 昆明理工大学, 1–109.
[90] 李爱玲. 2004. 天然石膏及其开发利用研究进展[J]. 矿产与地质, 18(5): 498−501. doi: 10.3969/j.issn.1001-5663.2004.05.020
[91] 李奇林, 张小林, 李作武, 张磊. 2022. 新疆库尔楚石膏矿地质特征及成因分析[J]. 中国非金属矿工业导刊, (4): 53−57. doi: 10.3969/j.issn.1007-9386.2022.04.014
[92] 李伟, 桂青, 朱乔乔, 郑先伟, 张志远, 韩颖霄. 2016. 鄂东南程潮铁矿多世代叠加成矿作用: 磁铁矿证据[J]. 岩石学报, 32(2): 471−492.
[93] 李逸晨. 2019. 石膏行业的发展现状及趋势[J]. 硫酸工业, (11): 1−7,13. doi: 10.3969/j.issn.1002-1507.2019.11.001
[94] 刘成林, 宣之强, 曹养同, 王立成, 王春连, 赵艳军, 张华. 2015. 探索中国陆块找钾—中国东特提斯域成钾作用及模式[J]. 化工矿产地质, (4): 193−197. doi: 10.3969/j.issn.1006-5296.2015.04.001
[95] 刘卫红, 李耀西, 张瑛. 1993. 湘中石炭纪石膏矿床的控制因素探讨[J]. 岩相古地理, 13(4): 12−18.
[96] 刘晓, 刘朝阳, 范天甲, 张秀云, 翁红波, 张焕. 2020. 河南袁家庄石膏矿矿床地质特征及成因[J]. 中国非金属矿工业导刊, (3): 37−41. doi: 10.3969/j.issn.1007-9386.2020.03.011
[97] 卢志诚. 1983. 中国石膏矿床成因类型[J]. 地质论评, 29(5): 457. doi: 10.3321/j.issn:0371-5736.1983.05.038
[98] 罗大有. 1985. 辽吉海积寒武纪石膏矿床[J]. 矿床地质, 4(3): 85−94.
[99] 罗书文, 李坡, 陈伟海, 韦跃龙, 欧阳志宏, 邓亚东, 覃星铭. 2019. 贵州绥阳双河溶洞系统发育机理与演化研究[J]. 重庆师范大学学报(自然科学版), 36(1): 111−118,144.
[100] 吕宪河, 高廷臣, 陈俊魁, 陈瑞宝, 程兴国, 胡小川, 蔡仲明. 2011. 石膏矿床的地质特征及对硫化矿床的指示意义[J]. 地质学刊, 35(1): 11−14. doi: 10.3969/j.issn.1674-3636.2011.01.11
[101] 马智强. 2000. 宁夏石膏资源开发利用[J]. 中国非金属矿工业导刊, (6): 31−34. doi: 10.3969/j.issn.1007-9386.2000.06.011
[102] 裴永万, 芦杰. 2007. 辽阳市东京陵石膏矿床地质特征[J]. 中国非金属矿工业导刊, (4): 59−62. doi: 10.3969/j.issn.1007-9386.2007.04.021
[103] 秦守萍, 高明波, 朱国庆, 陈志强, 秦文静. 2008. 泰安汶口盆地吴家新庄石膏矿地质特征及成因分析[J]. 山东国土资源, 24(4): 29−32. doi: 10.3969/j.issn.1672-6979.2008.04.015
[104] 覃志安, 李俊建. 2005. 环渤海地区非金属矿地质特征[J]. 地质调查与研究, 28(4): 265−271.
[105] 石厚礼, 张鹏, 姜赟赟. 2016. 山东省大汶口盆地蒸发岩地球化学特征及找钾标志[J]. 山东国土资源, 32(6): 41−45. doi: 10.3969/j.issn.1672-6979.2016.06.007
[106] 宋春振. 2009. 辽宁东京陵石膏矿床碳酸盐岩特征与石膏找矿[J]. 辽宁建材, (5): 13−14. doi: 10.3969/j.issn.1009-0142.2009.05.005
[107] 宋许根, 刘秀敏, 陈从新, 郑先伟, 夏开宗, 杨括宇, 陈山. 2018. 程潮铁矿西区采空区地表塌陷机制与变形规律初探[J]. 岩石力学与工程学报, 37(A2): 4262−4273.
[108] 陶维屏. 1983. 中国海积三叠纪石膏矿床[J]. 地质学报, (2): 172−183.
[109] 王文楷, 许国明, 宋晓波, 隆轲, 陈颖. 2017. 四川盆地雷口坡组膏盐岩成因及其油气地质意义[J]. 成都理工大学学报(自然科学版), 44(6): 697−707.
[110] 王艳婷, 刘彦奎, 王东, 于超. 2014. 泰安市大汶口石膏矿王庄矿段地质特征及成因分析[J]. 中国非金属矿工业导刊, (5): 42−44, 62. doi: 10.3969/j.issn.1007-9386.2014.05.014
[111] 王自具, 李强, 李宗成. 2003. 山东省泰安市大汶口盆地石膏矿资源潜力评价矿产品需求预测及开发建议[J]. 山东国土资源, (5): 23−25. doi: 10.3969/j.issn.1672-6979.2003.05.015
[112] 文华国, 霍飞, 郭佩, 甯濛, 梁金同, 钟怡江, 苏中堂, 徐文礼, 刘四兵, 温龙彬, 蒋华川. 2021. 白云岩—蒸发岩共生体系研究进展及展望[J]. 沉积学报, 39(6): 1321−1343.
[113] 吴贇. 2019. 辽宁省石膏矿地质特征、成因及成矿预测[D]. 长春: 吉林大学, 1–105.
[114] 谢丽丽, 孟凡巍, 卓勤功, 张国权. 2023. 山东大汶口盆地石盐地球化学特征及其成因[J]. 盐湖研究, 31(3): 59−68. doi: 10.12119/j.yhyj.202303008
[115] 徐兴国, 熊昌铨. 1987. 川东下中三叠统石膏矿床的保存和水化条件初步分析[J]. 建材地质, (2): 20−24.
[116] 薛平. 1985. 华北中奥陶世石膏矿床的某些成矿规律研究[J]. 中国非金属矿工业导刊, (4): 26−31,16.
[117] 薛武. 1986. 我国石膏矿产时空分布概况及成矿特点初探[J]. 中国非金属矿工业导刊, (4): 31−35.
[118] 杨辉. 2022. 常见药用非金属矿物的功能及研究进展[J]. 中国非金属矿工业导刊, (4): 1−3,7. doi: 10.3969/j.issn.1007-9386.2022.04.001
[119] 杨再银. 2021. 中国工业副产石膏利用现状及“十四五”展望[J]. 硫酸工业, (7): 1−4,23.
[120] 张凡凡, 陈超, 张西兴, 相利学. 2017. 不同来源石膏的性能特点与应用分析[J]. 无机盐工业, 49(8): 10−13.
[121] 张连强, 张欢. 2018. 辽宁省辽阳盆地石膏矿地质特征及成矿规律[J]. 中国非金属矿工业导刊, (1): 47−50. doi: 10.3969/j.issn.1007-9386.2018.01.015
[122] 张绍云, 周忠发, 田衷珲. 2017. 膏盐层下石膏晶洞水化学特征的环境指示意义[J]. 科学技术与工程, 17(16): 13−20. doi: 10.3969/j.issn.1671-1815.2017.16.003
[123] 郑涛. 2013. 中国石膏矿产资源现状[J]. 黑龙江科技信息, (23): 115.
[124] 郑涛, 文灿国. 2013. 东北寒武纪石膏成矿分析[J]. 民营科技, (9): 35. doi: 10.3969/j.issn.1673-4033.2013.09.034
[125] 郑希民, 杨柳, 易定红, 王朴. 2019. 柴达木盆地西部古近系石膏及其硫同位素分布特征[J]. 沉积与特提斯地质, 39(4): 65−70.
[126] 朱猛. 2015. 山东省大汶口盆地盐类矿床的地质成因探讨[J]. 山东国土资源, 31(1): 27−30. doi: 10.3969/j.issn.1672-6979.2015.01.006
-