THE PETROGENESIS AND TECTONIC SETTING OF THE ORE-BEARING MAFIC LAYERED INTRUSIONS IN LALA AREA, WESTERN SICHUAN
-
摘要: 川西拉拉含矿镁铁质层状岩体位于扬子地块西缘,构造环境复杂,关于其成因机制及岩浆源区的问题至今仍缺乏系统的研究。文章针对该岩体七个岩相带,进行了主、微量元素和Sr-Nd同位素分析,结果表明,七个岩相带(YWS-1—YWS-7)是岩浆经历不同的演化过程而形成的。其中,第五相带SiO2含量高(42.95%~44.07%),MgO含量低(1.62%~1.89%),稀土总量明显偏低(295.32×10-6~366.36×10-6),Cr、Ni含量偏低,87Sr/86Sr为0.7391~0.7812,是受到地壳混染所致;其它相带Mg#值高(0.54~0.74),稀土总量偏高(672.53×10-6~986.66×10-6),87Sr/86Sr为0.7087~0.7097,显示岩石圈地幔源区特征。结合区域地质背景分析,认为该层状岩体产生于大陆裂谷构造环境,岩浆来源于岩石圈地幔源区,演化过程中结晶分异和多次脉动作用相伴。这一活动过程与新元古时期扬子板块西缘的超级地幔柱活动有关。Abstract: The ore-bearing mafic layered intrusions in Lala District, Western Sichuan Province, is located on the west margin of the Yangzi platform with complex tectonic environment, and there is still a lack of systematic research on its genesis mechanism and magmatic source. The main, trace elements and Sr-Nd isotopes of the seven lithofacies belts are analyzed in this article, and the results show that the seven lithofacies belts (YWS-1-YWS-7) were formed by different evolution processes of magma. The fifth lithofacies (YWS-5) represents the magma derived from mantle contaminated by earth crust, with high SiO2 content (42.95%~44.07%), low MgO content (1.62%~1.89%), obviously low total amount of rare earth elements (295.32×10-6~366.36×10-6), low content of Cr, Ni, 87Sr/86Sr 0.7391~0.7812; other lithofacies represent the magma derived from lithospheric mantle source area, with high Mg#content (0.54~0.74), high content of rare earth elements (672.53×10-6~986.66×10-6), 87Sr/86Sr 0.7087~0.7097.Based on the analysis of regional geological background, it is concluded that the layered intrusions were produced in continental rift tectonic environment and the magma originated from lithospheric mantle source area, with crystallization differentiation and multiple pulsations associated in the evolution process. This process is related to the Neoproterozoic super mantle plume activities on the western margin of the Yangtze plate.
-
Key words:
- Lala mining area /
- layered intrusions /
- major and trace elements /
- lithospheric mantle /
- petrogenesis
-
-
图 2 岩体典型露头及显微镜下特征(据文献[10])
Figure 2.
图 3 TAS图解(据文献[16])
Figure 3.
图 4 Zr/P2O5—TiO2图(据文献[17])
Figure 4.
图 5 球粒陨石标准化稀土元素配分图及微量元素原始地幔标准化蛛网图(据文献[21])
Figure 5.
图 6 拉拉镁铁质岩体εNd(t)—(87Sr/86Sr)i图解[24]
Figure 6.
图 9 构造判别图(据文献[9])
Figure 9.
表 1 各相带主量元素(wt%)地球化学分析数据
Table 1. Geochemical analysis data of major elements (wt%) in each lithofacies belt
Sample YWS-1 YWS-2 YWS-3a YWS-3b YWS-3c YWS-3d YWS-4a YWS-4b YWS-5a YWS-5b YWS-5c YWS-6a YWS-6b YWS-7a YWS-7b YWS-7c YWS-7d SiO2 41.91 41.71 41.52 41.43 41.05 40.84 41.25 42.67 44.07 42.95 44.05 41.83 41.35 41.33 41.19 41.51 41.67 TiO2 3.36 3.24 2.81 2.59 2.52 2.54 2.95 3.30 3.53 3.66 3.83 3.29 3.22 2.78 2.45 2.71 2.92 Al2O3 10.81 10.67 8.63 7.87 8.07 8.07 9.88 10.46 13.59 14.05 14.64 10.40 10.03 8.82 7.97 8.51 9.18 Fe2O3 4.64 3.90 4.28 4.25 4.26 3.77 3.90 3.91 12.09 12.24 12.88 4.18 4.00 3.81 3.53 3.91 3.86 FeO 6.70 7.29 6.95 7.24 7.20 7.82 6.87 7.12 6.62 8.21 8.86 7.04 7.04 7.49 7.96 7.54 7.14 MnO 0.20 0.26 0.16 0.20 0.20 0.21 0.23 0.24 0.64 0.55 0.48 0.38 0.33 0.24 0.25 0.25 0.26 MgO 7.20 7.85 13.95 17.91 16.92 16.14 8.96 7.90 1.89 1.62 1.63 7.53 8.30 13.15 16.63 14.62 11.85 CaO 11.40 10.89 10.92 8.85 9.55 9.68 11.84 10.85 5.84 5.20 2.45 11.48 12.33 10.83 8.77 9.47 10.99 Na2O 3.11 3.13 1.77 1.06 1.31 1.55 2.93 3.09 2.29 3.31 5.12 3.20 2.92 2.11 1.26 1.79 2.39 K2O 1.98 2.43 1.72 1.51 1.53 1.58 2.35 2.34 3.30 2.86 2.14 1.94 1.81 1.58 1.43 1.44 1.60 P2O5 1.05 0.96 0.80 0.70 0.77 0.76 0.91 0.94 0.79 0.79 0.86 0.98 0.93 0.82 0.76 0.83 0.87 LOI 7.09 7.11 6.01 5.74 6.10 6.38 7.33 6.59 5.05 4.04 2.74 7.66 7.58 6.68 7.21 7.01 7.00 H2O+ 0.55 0.68 0.65 0.66 0.82 0.79 0.67 0.70 0.65 0.38 1.12 0.65 0.67 0.84 1.58 1.23 0.99 H2O- 0.48 0.45 0.58 0.81 0.62 0.53 0.65 0.67 0.59 0.49 0.52 0.46 0.52 0.50 0.54 0.47 0.47 Total 100.48 100.57 100.75 100.82 100.92 100.66 100.72 100.78 100.94 100.35 101.32 101.02 101.03 100.98 101.53 101.29 101.19 表 2 各相带微量元素和稀土元素(×10-6)地球化学分析数据
Table 2. Geochemical analysis data of trace element and rare earch elements (× 10-6) in each lithofacies belt
Sample YWS-1 YWS-2 YWS-3a YWS-3b YWS-3c YWS-3d YWS-4a YWS-4b YWS-5a YWS-5b YWS-5c YWS-6a YWS-6b YWS-7a YWS-7b YWS-7c Sc 29.6 34.8 29.5 27.0 32.2 34.2 26.6 28.6 32.3 24.6 25.6 31.1 30.8 28.3 29.0 28.7 V 324 330 276 231 279 308 241 248 363 292 352 306 289 265 237 255 Cr 189 346 963 1250 473 364 1200 1190 12.3 5.63 7.56 282 375 817 1220 1020 Co 40.9 42.7 62.3 75.8 65.4 68.6 48.2 42.3 34.3 30.7 47.8 44.2 43.9 56.3 65.2 64.2 Ni 52.6 68.9 389 576 127 67.6 501 501 21.3 18.9 25.8 61.8 89.6 325 513 407 Cu 111 121 80.3 48.4 87.6 104 47.7 50.5 6.36 13.4 23.5 94.3 103 109 40.8 80.0 Zn 81.1 78.9 115 108 79.6 90.0 103 108 37.6 28.0 36.6 61.8 65.2 92.0 135 101 Ga 17.8 19.3 15.9 12.7 13.0 16.4 19.3 19.2 33.3 26.4 26.8 19.6 18.5 16.0 14.3 16.8 Rb 52.0 79.6 48.2 39.6 64.7 77.8 38.5 46.2 132 94.6 91.2 73.5 58.3 45.6 46.5 46.3 Sr 1260 1189 936 989 1620 1356 987 1123 256 146 86 1110 1260 996 752 895 Y 36.7 34.2 30.2 27.9 28.1 32.1 36.5 36.8 46.8 36.5 37.6 35.3 33.7 30.4 28.4 29.7 Zr 428 389 319 372 295 398 310 316 378 374 419 405 413 339 292 321 Nb 80.1 63.6 44.2 55.2 48.7 57.8 44.9 46.2 55.7 47.4 53.6 52.0 47.5 46.2 45.3 44.2 Sb 0.37 0.28 0.29 0.25 0.28 0.21 0.24 0.26 0.12 0.13 0.13 0.19 0.25 0.31 0.35 0.36 Cs 1.61 2.39 2.38 2.20 2.10 2.17 2.01 2.39 0.96 0.83 1.06 1.98 1.94 1.92 2.15 2.06 Ba 236 246 214 152 226 245 304 235 248 369 366 249 263 256 268 352 La 206 195 175 149 150 178 203 224 56.3 43.2 51.2 200 186 164 156 164 Ce 398 385 337 287 287 336 396 423 125 103 119 380 357 318 302 302 Pr 42.3 39.6 35.6 30.3 30.3 35.6 40.9 42.5 15.2 12.4 14.0 40.2 37.8 33.4 31.7 31.9 Nd 168 163 146 123 126 145 167 184 63.5 53.6 63.9 164 155 138 131 132 Sm 28.9 25.6 22.9 18.5 20.9 22.4 26.3 28.3 14.5 12.3 13.4 27.6 24.6 21.3 21.3 22.2 Eu 6.74 6.23 5.75 4.97 5.01 5.85 6.54 6.69 4.32 3.45 4.05 6.58 6.22 5.56 5.14 5.24 Gd 18.2 19.6 16.7 14.3 14.6 17.6 19.6 20.3 13.5 10.6 11.8 18.6 18.2 15.9 14.8 15.5 Tb 2.22 2.36 2.06 1.80 1.79 2.22 2.33 2.55 2.29 1.53 1.72 2.23 2.21 2.00 1.84 1.90 Dy 10.2 11.1 9.13 8.30 10.9 11.6 8.30 9.89 12.6 9.63 9.88 10.4 10.1 9.00 8.51 8.73 Ho 1.52 1.63 1.44 1.28 1.59 1.75 1.27 1.53 1.92 1.42 1.63 1.54 1.50 1.36 1.29 1.30 Er 3.63 3.71 3.31 2.98 3.73 3.78 2.96 3.50 5.13 3.85 3.96 3.59 3.43 3.15 2.93 3.03 Tm 0.54 0.52 0.49 0.45 0.56 0.54 0.46 0.52 0.75 0.58 0.59 0.54 0.52 0.49 0.47 0.47 Yb 2.73 2.90 2.57 2.34 3.00 3.20 2.35 2.63 3.96 2.78 2.98 2.81 2.69 2.51 2.33 2.39 Lu 0.46 0.47 0.43 0.41 0.48 0.50 0.41 0.45 0.59 0.48 0.48 0.47 0.46 0.44 0.42 0.42 Hf 10.7 10.0 10.0 10.1 9.26 9.96 8.22 10.6 8.78 9.62 10.6 10.2 10.3 10.1 10.4 8.93 Ta 2.05 2.06 1.44 3.63 1.76 1.95 2.63 1.78 2.19 3.56 3.51 2.78 1.22 1.78 1.41 1.44 Bi 0.15 0.17 0.26 0.37 0.23 0.26 0.27 0.33 0.18 0.25 0.19 0.36 0.26 0.21 0.38 0.36 Th 23.6 18.2 10.3 20.4 17.2 13.6 13.5 17.6 3.89 3.95 4.02 13.5 13.2 15.4 14.3 16.2 U 5.70 5.57 4.85 4.39 4.10 4.74 5.89 6.12 0.33 0.24 0.29 5.63 5.42 4.86 4.15 4.74 表 3 各相带Sm-Nd同位素分析数据
Table 3. The Sm-Nd isotope analysis data in each lithofacies belt
样品号 Rb/×10-6 Sr/×10-6 87Sr/86Sr (87Sr/86Sr)i Sm/×10-6 Nd/×10-6 147Sm/144Nd 143Nd/144Nd (143Nd/144Nd)i εNd(t) YWS-1 52 1260 0.709398 0.707904 28.9 168 0.103991 0.512342 0.511762 4.3 YWS-2 79.6 1189 0.709864 0.707441 25.6 163 0.094942 0.512320 0.511791 4.9 YWS-3a 48.2 936 0.709211 0.707347 22.9 146 0.094818 0.512329 0.511800 5.1 YWS-3b 39.6 989 0.708867 0.707418 18.5 123 0.090923 0.512325 0.511818 5.4 YWS-3c 64.7 1620 0.708847 0.707401 20.9 126 0.100272 0.512309 0.511750 4.1 YWS-3d 77.8 1356 0.708778 0.706701 22.4 145 0.093386 0.512294 0.511773 4.5 YWS-4a 38.5 987 0.70911 0.707698 26.3 167 0.095202 0.512316 0.511785 4.8 YWS-4b 46.2 1123 0.709481 0.707992 28.3 184 0.092977 0.512321 0.511803 5.1 YWS-5a 132 256 0.739185 0.720520 14.5 63.5 0.138036 0.512258 0.511489 -1.0 YWS-5b 94.6 146 0.746396 0.722941 12.3 53.6 0.138711 0.511969 0.511196 -6.8 YWS-5c 91.2 86.3 0.781211 0.742957 13.4 63.9 0.126765 0.512213 0.511506 -0.7 YWS-6a 73.5 1110 0.709751 0.707354 27.6 164 0.101735 0.512328 0.511761 4.3 YWS-6b 58.3 1260 0.709367 0.707692 24.6 155 0.095942 0.512316 0.511781 4.7 YWS-7a 45.6 996 0.709234 0.707577 21.3 138 0.093305 0.512313 0.511793 4.9 YWS-7b 46.5 752 0.709523 0.707285 21.3 131 0.098291 0.512319 0.511771 4.5 YWS-7c 46.3 895 0.709281 0.707408 22.2 132 0.101668 0.512320 0.511753 4.1 YWS-7d 55.6 1080 0.709412 0.707548 24.6 151 0.098484 0.512319 0.511770 4.5 -
Stewart B W, DePaolo D J. Isotopic studies of processes in mafic magma chambers:Ⅱ. The Skaergaard intrusion, East Greenland[J]. Contributions to Mineralogy and Petrology, 1990, 104(2):125~141. doi: 10.1007/BF00306438
Irvine T N. Crystallization sequences in the Muskox intrusion and other layered intrusions-Ⅱ. Origin of chromitite layers and similar deposits of other magmatic ores[J]. Geochimica et Cosmochimica Acta, 1975, 39(6~7):991~1008, IN9-IN10, 1009~1020. http://www.sciencedirect.com/science/article/pii/0016703775900435
Kruger F J, Marsh J S. Significance of 87Sr/86Sr ratios in the Merensky cyclic unit of the Bushveld Complex[J]. Nature, 1982, 298(5869):53~55. doi: 10.1038/298053a0
Kruger F J. Filling the Bushveld Complex magma chamber:lateral expansion, roof and floor interaction, magmatic unconformities, and the formation of giant chromitite, PGE and Ti-V-magnetitite deposits[J]. Mineralium Deposita, 2005, 40(5):451~472. doi: 10.1007/s00126-005-0016-8
Palacz Z A. Isotopic and geochemical evidence for the evolution of a cyclic unit in the Rhum intrusion, north-west Scotland[J]. Nature, 1984, 307(5952):618~620. doi: 10.1038/307618a0
钟宏, 胡瑞忠, 朱维光, 等.层状岩体的成因及成矿作用[J].地学前缘, 2007, 14(2):159~172. doi: 10.3321/j.issn:1005-2321.2007.02.013
ZHONG Hong, HU Ruizhong, ZHU Weiguang, et al. Genesis and mineralization of layered intrusions[J]. Earth Science Frontiers, 2007, 14(2):159~172. (in Chinese with English abstract) doi: 10.3321/j.issn:1005-2321.2007.02.013
ZHU Zhimin. Lala iron oxide copper gold deposit:metallogenic epoch and metal sources[J]. Chengdu:Chengdu University of Technology, 2011:52~54. (in Chinese with English abstract)
周家云, 郑荣才, 朱志敏, 等.拉拉铜矿黄铁矿微量元素地球化学特征及其成因意义[J].矿物岩石, 2008, 28(3):64~71. doi: 10.3969/j.issn.1001-6872.2008.03.011
ZHOU Jiayun, ZHENG Rongcai, ZHU Zhimin, et al. Geochemical characteristics of trace elements of pyrite and its implications to the metallogenesis in the Lala copper deposit[J]. Journal of Mineralogy and Petrology, 2008, 28(3):64~71. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-6872.2008.03.011
周家云, 郑荣才, 朱志敏, 等.四川会理拉拉铜矿辉长岩群地球化学与Sm-Nd同位素定年[J].矿物岩石地球化学通报, 2009, 28(2):111~122. doi: 10.3969/j.issn.1007-2802.2009.02.002
ZHOU Jiayun, ZHENG Rongcai, ZHU Zhimin, et al. Geochemistry and Sm-Nd dating of the gabbro in the Lala copper ore district, Sichuan Province, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2009, 28(2):111~122. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-2802.2009.02.002
孙君一, 于文佳, 唐泽勋, 等.川西拉拉Fe-Cu矿区含矿镁铁质层状岩席的首次发现及其成岩成矿意义[J/OL].地学前缘, 2017, 24.https://doi.org/10.13745/j.esf.yx.2017-3-54
SUN Junyi, YU Wenjia, TANG Zexun, et al. Firstly discovering the ore-bearing mafic layered sill in the Lala Fe-Cu ore district, Western Sichuan Province, China, and its implications for petrogenesis and metallogenesis[J/OL]. Earth Science Frontiers, 2017, 24. https://doi.org/10.13745/j.esf.yx.2017-3-54(in Chinese with English abstract)
于文佳, 罗照华, 刘永顺, 等.拉拉铁铜矿床成因:来自隐爆角砾岩结构定量化和锆石U-Pb年代学的证据[J].岩石学报, 2017, 33(3):925~941. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201703019
YU Wenjia, LUO Zhaohua, LIU Yongshun, et al. Petrogenesis of the Lala iron-copper deposit:Evidence by cryptoexplosive breccia CSD data and their zircon U-Pb data[J]. Acta Petrologica Sinica, 2017, 33(3):925~941. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201703019
Pin C, Zalduegui J S. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography:Application to isotopic analyses of silicate rocks[J]. Analytica Chimica Acta, 1997, 339(1~2):79~89. http://d.old.wanfangdata.com.cn/NSTLQK/10.1007-s12144-011-9125-y/
Chen F, Siebel W, Satir M, et al. Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone[J]. International Journal of Earth Sciences, 2002, 91(3):469~481. doi: 10.1007/s00531-001-0239-6
Green D H. Genesis of Archean Peridotitic magmas and constraints on Archean geothermal gradients and tectonics[J]. Geology, 1975, 3(1):15~18. doi: 10.1130/0091-7613(1975)3<15:GOAPMA>2.0.CO;2
Frey F A, Green D H, Roy S D. Integrated models of basalt Petrogenesis:a study of quartz Tholeiites to olivine Melilitites from south eastern Australia utilizing geochemical and experimental petrological data[J]. Journal of Petrology, 1978, 19(3):463~513. doi: 10.1093/petrology/19.3.463
Hastie A R, Kerr A C, Pearce J A, et al. Classification of altered volcanic island arc rocks using immobile trace elements:development of the Th-Co discrimination diagram[J]. Journal of Petrology, 2007, 48(12):2341~2357. doi: 10.1093/petrology/egm062
Winchester J A, Floyd P A. Geochemical magma type discrimination:application to altered and metamorphosed basic igneous rocks[J]. Earth and Planetary Science Letters, 1976, 28(3):459~469. doi: 10.1016/0012-821X(76)90207-7
Wilson M B. Igneous petrogenesis a global tectonic approach[M]. Netherlands:Springer, 1989.
李献华, 周汉文, 李正祥, 等.川西新元古代双峰式火山岩成因的微量元素和Sm-Nd同位素制约及其大地构造意义[J].地质科学, 2002, 37(3):264~276. doi: 10.3321/j.issn:0563-5020.2002.03.002
LI Xianhua, ZHOU Hanwen, LI Zhengxiang, et al. Petrogenesis of Neoproterozoic bimodal volcanics in western Sichuan and its tectonic implications:Geochemical and Sm-Nd isotopic constraints[J]. Chinese Journal of Geology, 2002, 37(3):264~276. (in Chinese with English abstract) doi: 10.3321/j.issn:0563-5020.2002.03.002
姜常义, 张蓬勃, 卢登荣, 等.新疆塔里木板块西部瓦吉里塔格地区二叠纪超镁铁岩的岩石成因与岩浆源区[J].岩石学报, 2004, 20(6):1433~1444. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200406013
JIANG Changyi, ZHANG Pengbo, LU Dengrong, et al. Petrogenesis and magma source of the ultramafic rocks at Wajilitag region, western Tarim Plate in Xinjiang[J]. Acta Petrologica Sinica, 2004, 20(6):1433~1444. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98200406013
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313~345. doi: 10.1144/GSL.SP.1989.042.01.19
丁林, 张进江, 周勇, 等.青藏高原岩石圈演化的记录:藏北超钾质及钠质火山岩的岩石学与地球化学特征[J].岩石学报, 1999, 15(3):408~421. http://d.old.wanfangdata.com.cn/Periodical/ysxb98199903009
DING Lin, ZHANG Jinjiang, ZHOU Yong, et al. Tectonic implication on the lithosphere evolution of the Tibet Plateau:petrology and geochemistry of sodic and ultrapotassic volcanism in Northern Tibet[J]. Acta Petrologica Sinica, 1999, 15(3):408~421. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98199903009
曾威, 司马献章, 王家松, 等.周庵铜镍-铂族矿床锆石U-Pb年代学、地球化学及Sr-Nd同位素特征:对周庵基性-超基性岩体及矿床成因的探讨[J].岩石学报, 2016, 32(4):1232~1248. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201604021
ZENG Wei, SIMA Xianzhang, WANG Jiasong, et al. Geochronology, geochemistry and Sr-Nd isotope characteristics of Zhou'an Cu-Ni-PGE deposit:genesis of mafic-ultramafic rock and ore deposit[J]. Acta Petrologica Sinica, 2016, 32(4):1232~1248. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201604021
Qi L, Wang C Y, Zhou M F. Controls on the PGE distribution of Permian Emeishan alkaline and peralkaline volcanic rocks in Longzhoushan, Sichuan Province, SW China[J]. Lithos, 2008, 106(3~4):222~236. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.lithos.2008.07.012/
赵莉, 张招崇, 王福生, 等.一个开放的岩浆房系统:攀西新街镁铁-超镁铁质层状岩体[J].岩石学报, 2006, 22(6):1565~1578. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200606014
ZHAO Li, ZHANG Zhaochong, WANG Fusheng, et al. Open-system magma chamber:an example from the Xinjie mafic-ultramafic layered intrusion in Panxi region, SW China[J]. Acta Petrologica Sinica, 2006, 22(6):1565~1578. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98200606014
Taylor S R, McLennan S M. The continental crust:its composition and evolution[J]. Oxford:Blackwell Scientific Pub., 1985. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_7b034b121c08912757b660fdefe8747e
Hanski E J, Smolkin V F. Iron-and LREE-enriched mantle source for early Proterozoic intraplate magmatism as exemplified by the Pechenga ferropicrites, Kola Peninsula, Russia[J]. Lithos, 1995, 34(1~3):107~125. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0024-4937(94)00035-Z/
McKenzie D, O'Nions R K. The source regions of ocean Island Basalts[J]. Journal of Petrology, 1995, 36(1):133~159. doi: 10.1093/petrology/36.1.133
Garuti G, Bea F, Zaccarini F, et al. Age, geochemistry and Petrogenesis of the ultramafic pipes in the Ivrea zone, NW Italy[J]. Journal of Petrology, 2001, 42(2):433~457. doi: 10.1093/petrology/42.2.433
夏昭德, 姜常义, 夏明哲, 等.镁铁质-超镁铁质层状岩体基本特征及岩浆作用[J].西北地质, 2011, 44(1):85~94. doi: 10.3969/j.issn.1009-6248.2011.01.011
XIA Zhaode, JIANG Changyi, XIA Mingzhe, et al. Characteristics and magmatism of mafic ultramafic layered intrusions[J]. Northwestern Geology, 2011, 44(1):85~94. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-6248.2011.01.011
姜常义, 夏明哲, 钱壮志, 等.新疆喀拉通克镁铁质岩体群的岩石成因研究[J].岩石学报, 2009, 25(4):749~764. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200904003
JIANG Changyi, XIA Mingzhe, QIAN Zhuangzhi, et al. Petrogenesis of Kalatongke mafic rock intrusions, Xinjiang[J]. Acta Petrologica Sinica, 2009, 25(4):749~764. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98200904003
Zieg M J, Marsh B D. Multiple reinjections and crystal-mush compaction in the Beacon Sill, McMurdo Dry Valleys, Antarctica[J]. Journal of Petrology, 2012, 53(12):2567~2591. doi: 10.1093/petrology/egs059
Egorova V, Latypov R. Mafic-ultramafic sills:new insights from M-and S-shaped mineral and whole-rock compositional profiles[J]. Journal of Petrology, 2013, 54(10):2155~2191. doi: 10.1093/petrology/egt045
李德东, 罗照华, 周久龙, 等.岩墙厚度对成矿作用的约束:以石湖金矿为例[J].地学前缘, 2011, 18(1):166~178. http://d.old.wanfangdata.com.cn/Periodical/dxqy201101021
LI Dedong, LUO Zhaohua, ZHOU Jiulong, et al. Constraints of dike thicknesses on the metallogenesis and its application to the Shihu gold deposit[J]. Earth Science Frontiers, 2011, 18(1):166~178. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy201101021
马帅, 陈世悦, 孙娇鹏, 等.祁漫塔格肯德可克火山岩锆石LA-ICP-MS U-Pb、40Ar/39Ar年龄及地质意义[J].地质力学学报, 2017, 23(4):558~566. doi: 10.3969/j.issn.1006-6616.2017.04.007 http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20170407&journal_id=dzlxxb
MA Shuai, CHEN Shiyue, SUN Jiaopeng, et al. A study on zircon LA-ICP-MS U-PB and 40Ar/39Ar ages of volcanic rocks from kendekeke, qimantage and the geological significance[J]. Journal of Geomechanics, 2017, 23(4):558~566. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2017.04.007 http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20170407&journal_id=dzlxxb
黄小龙, 徐义刚, 杨启军, 等.滇西晚始新世高镁富钾火山岩的地球化学特征及其岩石成因机制探讨[J].地球化学, 2007, 36(2):120~138. doi: 10.3321/j.issn:0379-1726.2007.02.002
HUANG Xiaolong, XU Yigang, YANG Qijun, et al. Geochemistry of Late Eocene high-Mg ultrapotassic lavas from western Yunnan, China:constraints on petrogenesis[J]. Geochimica, 2007, 36(2):120~138. (in Chinese with English abstract) doi: 10.3321/j.issn:0379-1726.2007.02.002
秦涛, 李林川, 唐振, 等.大兴安岭扎兰屯地区四班岩体岩石成因及构造环境研究[J].地质力学学报, 2017, 23(3):369~381. doi: 10.3969/j.issn.1006-6616.2017.03.005 http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20170305&journal_id=dzlxxb
QIN Tao, LI Linchuan, TANG Zhen, et al. A study on the petrogenesis and tectonic setting of the siban granite mass in Zhalantun area, Great khingan[J]. Journal of Geomechanics, 2017, 23(3):369~381. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2017.03.005 http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20170305&journal_id=dzlxxb
-