中国地质科学院地质力学研究所
中国地质学会
主办

中国深层和超深层碳酸盐岩油气藏形成分布的基本特征与动力机制及发展方向

庞雄奇, 林会喜, 郑定业, 李慧莉, 邹华耀, 庞宏, 胡涛, 国芳馨, 李宏雨. 2020. 中国深层和超深层碳酸盐岩油气藏形成分布的基本特征与动力机制及发展方向. 地质力学学报, 26(5): 673-695. doi: 10.12090/j.issn.1006-6616.2020.26.05.057
引用本文: 庞雄奇, 林会喜, 郑定业, 李慧莉, 邹华耀, 庞宏, 胡涛, 国芳馨, 李宏雨. 2020. 中国深层和超深层碳酸盐岩油气藏形成分布的基本特征与动力机制及发展方向. 地质力学学报, 26(5): 673-695. doi: 10.12090/j.issn.1006-6616.2020.26.05.057
PANG Xiongqi, LIN Huixi, ZHENG Dingye, LI Huili, ZOU Huayao, PANG Hong, HU Tao, GUO Fangxin, LI Hongyu. 2020. Basic characteristics, dynamic mechanism and development direction of the formation and distribution of deep and ultra-deep carbonate reservoirs in China. Journal of Geomechanics, 26(5): 673-695. doi: 10.12090/j.issn.1006-6616.2020.26.05.057
Citation: PANG Xiongqi, LIN Huixi, ZHENG Dingye, LI Huili, ZOU Huayao, PANG Hong, HU Tao, GUO Fangxin, LI Hongyu. 2020. Basic characteristics, dynamic mechanism and development direction of the formation and distribution of deep and ultra-deep carbonate reservoirs in China. Journal of Geomechanics, 26(5): 673-695. doi: 10.12090/j.issn.1006-6616.2020.26.05.057

中国深层和超深层碳酸盐岩油气藏形成分布的基本特征与动力机制及发展方向

  • 基金项目:
    国家自然科学基金联合基金项目(U19B6003)
详细信息
    作者简介: 庞雄奇(1961-), 男, 教授, 主要从事油气藏形成与分布预测的教学与科研工作。E-mail:pangxq@cup.edu.cn
  • 中图分类号: P618.13

  • 获奖者简历
    庞雄奇,中国石油大学(北京)教授,国家973项目首席科学家,2017年荣获第15届李四光地质科学奖科研奖。近30年潜心研究油气藏定量预测与评价,创立了油气门限控藏模式,为钻探目标优选提供理论指导,形成了系统性创新成果,被推广到国内外26个探区应用。应邀在全国性或国际性会议交流31次、发表论著299部,其中第一作者和通讯作者117篇;论著被他引4772次;获发明专利权16个、软件著作权11个,十年973研究为中国西部深层复杂油气藏钻探成功率从37.2%提高到63.5%做出了贡献。获国家科技进步一等奖1项、二等奖1项,省部级科技进步一等奖10项。享受国务院政府特殊津贴,荣获“全国优秀老师奖”等荣誉称号。

Basic characteristics, dynamic mechanism and development direction of the formation and distribution of deep and ultra-deep carbonate reservoirs in China

  • 随着油气资源对外依赖度加大,中国的油气勘探已经拓展到深层和超深层领域,并相继在中西部盆地发现了塔河、普光、安岳、靖边、顺北等一批大型油气田,展示出广阔的勘探前景。中国已探明的深层和超深层碳酸盐岩油气藏特征与全球的有很大差异,经典的油气地质理论指导这类油气田勘探遇到了前所未有的重大挑战,需要完善和发展。通过调研和比较全球已探明的碳酸盐岩和砂岩油气藏地质特征,发现它们的油气来源条件、油气藏形成条件、成藏动力、演化过程特征等类同;同时,发现碳酸盐岩和砂岩油气藏的矿物组成、孔隙度和渗透率随埋深变化特征、孔渗结构特征、储层物性下限、油气藏类型等有着很大不同。中国深层和超深层碳酸盐岩油气藏与全球的相比较具有五方面差异:地层年代更老、埋藏深度更大、白云岩储层比率更大、天然气资源比率更高、储层孔渗关系更乱。中国已经发现的深层碳酸盐岩油气藏成因类型可以归为五种:沉积型高孔高渗油气藏、压实成岩型低孔低渗油气藏、结晶成岩型低孔低渗油气藏、流体改造型高孔低渗油气藏、应力改造型低孔高渗油气藏;它们形成的动力学机制分别与地层沉积和浮力主导的油气运移作用、地层压实和非浮力主导的油气运移作用、成岩结晶和非浮力主导的油气运移作用、流体改造介质和浮力主导的油气运移作用、应力改造和浮力主导的油气运移作用等密切相关。中国深层和超深层碳酸盐岩油气藏勘探发展的有利领域和油气藏类型主要有三个:一是低热流盆地浮力成藏下限之上自由动力场形成的高孔高渗常规油气藏;二是构造变动频繁的叠合盆地内外应力和内部流体活动改造而形成的缝洞复合型油气藏;三是构造稳定盆地内局限动力场形成的广泛致密连续型非常规油气藏。改造类非常规致密碳酸盐岩油气藏是中国含油气盆地深层和超深层油气资源的主要类型:它们叠加了早期形成的常规油气藏特征,又具有自身广泛连续分布的非常规特征,还经受了后期构造变动的改造;复杂的分布特征,致密的介质条件和高温高压环境使得这类油气资源勘探开发难度大、成本高。

  • 加载中
  • 图 1  中国塔里木盆地和全球含油气盆地中浅层和深层已经发现的油气藏储层孔隙度和渗透率结构特征差异性比较

    Figure 1. 

    图 2  中国含油气盆地海相碳酸盐岩储层与不同条件下形成的砂岩储层的孔隙度随埋深增大的变化特征

    Figure 2. 

    图 3  中国深层和超深层碳酸盐岩油气成藏研究科学问题、主要内容、目标及关联性

    Figure 3. 

    图 4  含油气盆地碳酸盐岩地层沉积环境与碎屑岩地层沉积环境及矿物组成比较

    Figure 4. 

    图 5  全球碳酸盐岩和砂岩油气藏储层孔隙度随埋深变化特征

    Figure 5. 

    图 6  碳酸盐岩油气藏与砂岩油气藏的孔隙度和渗透率结构特征差异性比较

    Figure 6. 

    图 7  碳酸盐岩油气藏与砂岩油气藏有效储层物性范围比较

    Figure 7. 

    图 8  四川盆地普光沉积型礁滩体高孔高渗油气藏地质特征

    Figure 8. 

    图 9  四川盆地安岳压实成岩型低孔低渗白云岩油气藏地质特征

    Figure 9. 

    图 10  鄂尔多斯盆地靖边低孔低渗白云岩油气藏分布发育地质特征

    Figure 10. 

    图 11  a-塔河油田在塔里木盆地平面上分布特征; b-塔河油田在纵向剖面上的分布特征; c-岩心溶蚀孔洞发育特征; d-岩心测试(基质)孔渗特征(d-1—间房组,d-2—鹰山组)

    Figure 11. 

    图 12  塔里木盆地顺北应力改造型低孔高渗碳酸盐岩油气藏地质特征

    Figure 12. 

    图 13  中国含油气盆地砂岩储层与碳酸盐岩储层中浮力成藏下限对应临界条件差异性比较

    Figure 13. 

    图 14  中国含油气盆地砂岩油气藏和碳酸盐岩油气藏成藏底限研究与对比分析

    Figure 14. 

    图 15  含油气盆地油气动力场划分及其控油气藏分布规律

    Figure 15. 

    图 16  深层和超深层常规油气藏形成分布领域(据Pang et al., 2012a, 2020修改)

    Figure 16. 

    图 17  局限动力场内非浮力主导油气运移形成致密非常规碳酸盐岩油气藏

    Figure 17. 

    图 18  改造型局限动力场内多动力主导油气运移形成改造类致密非常规碳酸盐岩油气藏

    Figure 18. 

    表 1  中国和海外已经发现的最大的前五个碳酸盐岩油气田地质特征比较

    Table 1.  Comparison of the geological characteristics of the top five largest carbonate oil and gas fields discovered in China and overseas

    国家 盆地名称 油气田名称 储量/亿吨 层位 岩性 孔隙度/%/渗透率/mD 埋深/m
    中国 四川盆地 普光气田 3.5 二叠系 白云岩 8.1~12/3.24~479.3 >5000
    四川盆地 安岳气田 8.4 震旦系 白云岩 3.22/0.5 >5500
    塔里木盆地 塔河油田 13.5 奥陶系 灰岩+白云岩 1.15/1.54 >5000
    塔里木盆地 顺北油气田 17 奥陶系 灰岩+白云岩 1.96/7.50 >7000
    鄂尔多斯盆地 靖边气田 6.9 奥陶系 白云岩 6/2.63 >2500
    海外 伊朗扎格罗斯盆地 Gachsaran油田 34.6 中新统 石灰岩 9/15 < 3500
    阿联酋波斯湾盆地 Zakum油田 32.1 下白垩统 石灰岩 20/3 < 2500
    卡塔尔波斯湾盆地 North Field气田 263 二叠/三叠 白云岩 9.5/300 < 3500
    伊朗波斯湾盆地 Pars South气田 130 二叠/三叠 白云岩 20.25/0.94 < 3000
    俄罗斯滨里海盆地 Astrak han气田 27.7 上石炭统 灰岩 11/2.3 < 4500
    下载: 导出CSV

    表 2  中国深层和超深层碳酸盐岩油气藏成因特征与动力学分类

    Table 2.  Genetic characteristics and dynamic classification of deep and ultra-deep carbonate reservoirs in China

    碳酸盐岩油气成因分类 形成条件 基本特征 主控因素 动力机制 典型实例
    I常规类油气藏 I-1浮力主导常规圈闭油气藏 礁滩沉积鲕粒滩沉积 埋深相对较浅,高孔高渗 沉积作用 沉积成岩+浮力主导(先成岩后成藏) 普光气田威远气田
    I-2浮力主导裂缝改造油气藏 构造变动断裂作用 构造变动强,低孔高渗 断裂作用 应力改造+浮力主导(先裂缝后成藏) 顺北油气田
    I-3浮力主导孔洞改造油气藏 流体改造次生溶蚀 孔洞发育,高孔低渗 不整合作用 流体改造+浮力主导(先孔洞后成藏) 塔河油田
    II非常规类气藏 II-1非浮力主导致密圈闭油气藏 储层深埋压实 埋深相对较浅,低孔低渗 压实作用 浮力主导+压实致密(先成藏后致密) /
    II-2非浮力主导致密深盆油气藏 深坳区发育储层 埋深相对较大,低孔低渗 源岩排烃 压实+非浮力(先致密后成藏) 安岳气田
    III复合类油气藏 III-1多动力主导叠复连续油气藏 储层广泛连续 油气层广泛连续,不受构造控制 源储组合 浮力+成藏+非浮力(成藏后致密再成藏) /
    III-2多动力主导白云岩化油气藏 灰滩或云滩沉积 埋深较浅,低孔低渗 重结晶作用 结晶+浮力/非浮力(先缝隙后成藏) 靖边气田
    下载: 导出CSV
  • DENG S, LI H L, HAN J, et al., 2019. Characteristics of the central segment of Shunbei 5 strike-slip fault zone in Tarim Basin and its geological significance[J]. Oil & Gas Geology, 40(5):990-998, 1073. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201905005

    GU Y, WAN Y L, HUANG J W, et al., 2019. Prospects for ultra-deep oil and gas in the "deep burial and high pressure" Tarim Basin[J]. Petroleum Geology and Experiment, 41(2):157-164. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201902002

    GUO Y C, PANG X Q, LI Z X, et al., 2017. The critical buoyancy threshold for tight sandstone gas entrapment:Physical simulation, interpretation, and implications to the Upper Paleozoic Ordos Basin[J]. Journal of Petroleum Science and Engineering, 149:88-97. doi: 10.1016/j.petrol.2016.10.004

    HOVORKA S D, DUTTON A R, RUPPEL S C, 1994. Sedimentologic and diagenetic controls on aquifer properties, Lower Cretaceous Edwards Carbonate Aquifer, Texas:Implications for aquifer management[J]. AAPG Bulletin, 78(9):1460-1461. http://dx.doi.org/10.1306/a25fee9b-171b-11d7-8645000102c1865d

    IHS Energy Group, 2018. International petroleum exploration and production database[R]. Englewood, Colorado: IHS Energy Group.

    KANG Y Z, XING S W, LI H J, et al., 2019. Features of structural systems in northern China and its control on basin and hydrocarbon distribution[J]. Journal of Geomechanics, 25(6):1013-1024. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201906002

    LI Y T, QI L X, ZHANG S N, et al., 2019. Characteristics and development mode of the Middle and Lower Ordovician fault-karst reservoir in Shunbei area, Tarim Basin[J]. Acta Petrolei Sinica, 40(12):1470-1484. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-SYDQ201902019.htm

    LI Z, HUANG S J, LIU J Q, et al., 2010. Buried diagenesis, structurally controlled thermal-fluid process and their effect on Ordovician carbonate reservoirs in Tahe, Tarim basin[J]. Acta Sedimentologica Sinica, 28(5):969-979. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201005014

    LIU B Z, 2020. Analysis of main controlling factors of oil and gas differential accumulation in Shunbei area, Tarim Basin-taking Shunbei No.1 and No.5 strike slip fault zones as examples[J]. China Petroleum Exploration, 25(3):83-95. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsykt202003008

    LIU D H, XIAO X M, TIAN H, et al., 2009. Evidence of overpressured high-density methane inclusions and fluid pressure simulation calculations in the geological history of the Puguang Gas Field[C]//Proceedings of the 12th National Conference on Organic Geochemistry. Chengdu: Geological Society of China, Petroleum Society of China, Mineral Rock Geochemistry Society of China: 344-346. (in Chinese)

    LIU S G, SONG J M, ZHAO Y H, et al., 2014. Controlling factors of formation and distribution of Lower Cambrian Longwangmiao Formation high-quality reservoirs in Sichuan basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 41(6):657-670. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201406001

    MA Y S, 2007. Generation mechanism of Puguang gas field in Sichuan basin[J]. Acta Petrolei Sinica, 28(2):9-14, 21. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB200702001.htm

    MA Y S, CAI X Y, GUO T L, 2007. The controlling factors of oil and gas charging and accumulation of Puguang gas field in the Sichuan Basin[J]. Chinese Science Bulletin, 52(S1):193-200. doi: 10.1007/s11434-007-6007-7

    MA Y S, CAI X Y, LI G X, 2005. Basic characteristics and concentration of the Puguang gas field in the Sichuan basin[J]. Acta Geologica Sinica, 79(6):858-865. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200506014

    PANG X Q, 2014. Alteration and reformation of hydrocarbon reservoirs and simulation of the hydrocarbon loss through major tectonic events[M]. Beijing:Science Press. (in Chinese)

    PANG X Q, JIA C Z, PANG H, et al., 2018. Destruction of hydrocarbon reservoirs due to tectonic modifications:Conceptual models and quantitative evaluation on the Tarim Basin, China[J]. Marine and Petroleum Geology, 91:401-421. doi: 10.1016/j.marpetgeo.2018.01.028

    PANG X Q, JIA C Z, ZHANG K, et al., 2020. The dead line for oil and gas and implication for fossil resource prediction[J]. Earth System Science Data, 12(1):577-590. doi: 10.5194/essd-12-577-2020

    PANG X Q, JIANG Z X, HUANG H D, et al., 2014. Formation mechanisms, distribution models, and prediction of superimposed, continuous hydrocarbon reservoirs[J]. Acta Petrolei Sinica, 35(5):795-828. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201405001

    PANG X Q, LIAO Y, 2016. Genetic mechanism and prediction methodology for overstacked and continuous hydrocarbon accumulations[M]. Beijing:Science Press. (in Chinese)

    PANG X Q, LIU K Y, MA Z Z, et al., 2012a. Dynamic field division of hydrocarbon migration, accumulation and hydrocarbon enrichment rules in sedimentary basins[J]. Acta Geologica Sinica (English Edition), 86(6):1559-1592. doi: 10.1111/1755-6724.12023

    PANG X Q, WANG W Y, WANG Y X, et al., 2015. Comparison of otherness on hydrocarbon accumulation conditions and characteristics between deep and middle-shallow in petroliferous basins[J]. Acta Petrolei Sinica, 36(10):1167-1187. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201510001

    PANG X Q, ZHOU X Y, YAN S H, et al., 2012b. Research advances and direction of hydrocarbon accumulation in the superimposed basins, China:Take the Tarim Basin as an example[J]. Petroleum Exploration and Development, 39(6):692-699. doi: 10.1016/S1876-3804(12)60094-9

    QIAO B, LIU H F, HE L, et al., 2018. A new method to quantitatively rebuild palaeogeomorphology and its application to Jingbian gasfield Ordos basin[J]. Natural Gas Exploration and Development, 41(4):32-37. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqktykf201804006

    QIU Z, SHI Z S, DONG D Z, et al., 2016. Geological characteristics of source rock and reservoir of tight oil and its accumulation mechanism:A case study of Permian Lucaogou Formation in Jimusar sag, Junggar basin[J]. Petroleum Exploration and Development, 43(6):928-939. (in Chinese with English abstract) http://www.researchgate.net/publication/312129786_Geological_characteristics_of_source_rock_and_reservoir_of_tight_oil_and_its_accumulation_mechanism_A_case_study_of_Permian_Lucaogou_Formation_in_Jimusar_sag_Junggar_Basin

    SHEN W B, PANG X Q, ZHANG B S, et al., 2015. Physical properties differences and key controlling factors of the clasolite reservoirs and carbonate reservoirs in Tazhong Area[J]. Geological Journal of China Universities, 21(1):138-146. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201501014

    TODOROVIC-MARINIC D, CHOPRA S, EDMONDS M, 2011. Advanced seismic techniques help in characterizing a challenging Jean Marie carbonate play, NE British Columbia, Canada-a Case Study[J]. Csegrecorder, 10(1):51-59. http://csegrecorder.com/articles/view/advanced-seismic-techniques-help-in-characterizing-a-challenging-jean-marie

    WANG X X, CUI D Y, SUN C H, et al, 2019. Characteristics of strike-slip fault and its controlling on oil in block A of the Halahatang oilfield, Tarim basin[J]. Journal of Geomechanics, 25(6):1058-1067. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201906006

    WANG W Y, PANG X Q, CHEN Z X, et al., 2019a. Quantitative prediction of oil and gas prospects of the Sinian-Lower Paleozoic in the Sichuan Basin in central China[J]. Energy, 174:861-872. http://www.sciencedirect.com/science/article/pii/S0360544219304220

    WANG W Y, PANG X Q, CHEN Z X, et al., 2019b. Statistical evaluation and calibration of model predictions of the oil and gas field distributions in superimposed basins:A case study of the Cambrian Longwangmiao Formation in the Sichuan Basin, China[J]. Marine and Petroleum Geology, 106:42-61.

    WEI X S, CHEN J P, LV Q Q, et al., 2019. Quality differences between dolomite and tight sandstone reservoirs[J]. Oil & Gas Geology, 40(2):294-301. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201902009

    WU D, ZHU X M, ZHANG H H, et al., 2014. Deposition characteristics and hydrocarbon distribution in medium and large basins of Nansha, South China Sea[J]. Journal of Palaeogeography, 16(5):673-686. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201405009

    XU D Z, 2018. Research on the genetic mechanism of Ordovician reservoirs in Shunbei area[D]. Chengdu: Southwest Petroleum University. (in Chinese with English abstract)

    YANG C Y, WEN L, WANG T G, et al, 2020. Timing of hydrocarbon accumulation for paleo-oil reservoirs in Anyue gas field in Chuanzhong Uplift[J]. Oil & Gas Geology, 41(3):492-502. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz202003007

    YANG H, LIU S X, ZHANG D F, 2013. Main controlling factors of gas pooling in Ordovician marine carbonate reservoirs in the Ordos Basin and advances in gas exploration[J]. Natural Gas Industry, 33(5):1-12. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201305001

    ZHANG C L, PANG X Q, TIAN S C, et al., 2014. Oil-Source Correlation of Paleo-reservoir in Ordovician and the Gas Source of Jingbian Gasfield, West Ordos basin[J]. Natural Gas Geoscience, 25(8):1242-1251. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201408015

    ZHAO R, ZHAO T, LI H L, et al., 2019. Fault-controlled fracture-cavity reservoir characterization and main-controlling factors in the Shunbei hydrocarbon field of Tarim Basin[J]. Special Oil & Gas Reservoirs, 26(5):8-13. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tzyqc201905002

    ZHU G Y, ZHANG S C, 2009. Hydrocarbon accumulation conditions and exploration potential of deep reservoirs in China[J]. Acta Petrolei Sinica, 30(6):793-802. (in Chinese with English abstract)

    ZOU C N, ZHAI G M, ZHANG G Y, et al., 2015. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources[J]. Petroleum Exploration and Development, 2015, 42(1):13-25. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201501002

    邓尚, 李慧莉, 韩俊, 等, 2019.塔里木盆地顺北5号走滑断裂中段活动特征及其地质意义[J].石油与天然气地质, 40(5):990-998, 1073. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201905005

    顾忆, 万旸璐, 黄继文, 等, 2019. "大埋深、高压力"条件下塔里木盆地超深层油气勘探前景[J].石油实验地质, 41(2):157-164. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201902002

    康玉柱, 邢树文, 李会军, 等, 2019.中国北方地区构造体系控盆作用与控油分布规律[J].地质力学学报, 25(6):1013-1024. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190602&journal_id=dzlxxb

    李映涛, 漆立新, 张哨楠, 等, 2019.塔里木盆地顺北地区中-下奥陶统断溶体储层特征及发育模式[J].石油学报, 40(12):1470-1484. http://www.cnki.com.cn/Article/CJFDTotal-SYXB201912005.htm

    李忠, 黄思静, 刘嘉庆, 等, 2010.塔里木盆地塔河奥陶系碳酸盐岩储层埋藏成岩和构造-热流体作用及其有效性[J].沉积学报, 28(5):969-979. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201005014

    刘宝增, 2020.塔里木盆地顺北地区油气差异聚集主控因素分析:以顺北1号、顺北5号走滑断裂带为例[J].中国石油勘探, 25(3):83-95.

    刘德汉, 肖贤明, 田辉, 等, 2009.普光气田地质历史中存在超压的高密度甲烷包裹体证据和流体压力模拟计算[C]//第十二届全国有机地球化学学术会议论文集.成都: 中国地质学会, 中国石油学会, 中国矿物岩石地球化学学会: 344-346.

    刘树根, 宋金民, 赵异华, 等, 2014.四川盆地龙王庙组优质储层形成与分布的主控因素[J].成都理工大学学报(自然科学版), 41(6):657-670. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201406001

    马永生, 2007.四川盆地普光超大型气田的形成机制[J].石油学报, 28(2):9-14, 21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200702002

    马永生, 蔡勋育, 李国雄, 2005.四川盆地普光大型气藏基本特征及成藏富集规律[J].地质学报, 79(6):858-865. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200506014

    马永生, 蔡勋育, 郭彤楼, 2007.四川盆地普光大型气田油气充注与富集成藏的主控因素[J].科学通报, 52(S1):149-155.

    庞雄奇, 2014.油气藏调整改造与构造破坏烃量模拟[M].北京:科学出版社.

    庞雄奇, 姜振学, 黄捍东, 等, 2014.叠复连续油气藏成因机制、发育模式及分布预测[J].石油学报, 35(5):795-828. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201405001

    庞雄奇, 廖勇, 2016.叠复连续油气藏成因机制与预测方法:以南哈大气田的勘探与发现为例[M].北京:科学出版社.

    乔博, 刘海锋, 何鎏, 等, 2018.鄂尔多斯盆地靖边气田的古地貌定量恢复新方法[J].天然气勘探与开发, 41(4):32-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqktykf201804006

    邱振, 施振生, 董大忠, 等, 2016.致密油源储特征与聚集机理:以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J].石油勘探与开发, 43(6):928-939. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201606010.htm

    沈卫兵, 庞雄奇, 张宝收, 等, 2015.塔中地区碳酸盐岩与碎屑岩储层物性差异及主控因素[J].高校地质学报, 21(1):138-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201501014

    王新新, 崔德育, 孙崇浩, 等, 2019.哈拉哈塘油田A地区断裂特征及其控油作用[J].地质力学学报, 25(6):1058-1067. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190606&journal_id=dzlxxb

    魏新善, 陈娟萍, 吕奇奇, 等, 2019.白云岩与砂岩致密储集体质量的差异性[J].石油与天然气地质, 40(2):294-301. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201902009

    吴冬, 朱筱敏, 张厚和, 等, 2014.中国南沙海域大中型盆地沉积特征与油气分布[J].古地理学报, 16(5):673-686. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201405009

    许大钊, 2018.顺北地区奥陶系储层成因机制研究[D].成都: 西南石油大学.

    杨程宇, 文龙, 王铁冠, 等, 2020.川中隆起安岳气田古油藏成藏时间厘定[J].石油与天然气地质, 41(3):492-502. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz202003007

    杨华, 刘新社, 张道锋, 2013.鄂尔多斯盆地奥陶系海相碳酸盐岩天然气成藏主控因素及勘探进展[J].天然气工业, 33(5):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201305001

    张春林, 庞雄奇, 田世澄, 等, 2014.鄂尔多斯盆地西部奥陶系古油藏油源对比与靖边气田气源[J].天然气地球科学, 25(8):1242-1251. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201408015

    赵锐, 赵腾, 李慧莉, 等, 2019.塔里木盆地顺北油气田断控缝洞型储层特征与主控因素[J].特种油气藏, 26(5):8-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tzyqc201905002

    朱光有, 张水昌, 2009.中国深层油气成藏条件与勘探潜力[J].石油学报, 30(6):793-802. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200906001

    邹才能, 翟光明, 张光亚, 等, 2015.全球常规-非常规油气形成分布、资源潜力及趋势预测[J].石油勘探与开发, 2015, 42(1):13-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201501002

  • 加载中

(18)

(2)

计量
  • 文章访问数:  5565
  • PDF下载数:  107
  • 施引文献:  0
出版历程
收稿日期:  2020-07-30
修回日期:  2020-08-31
刊出日期:  2020-10-30

目录