Experimental study on physical and mechanical characteristics of tight sandstones in the Xujiahe Formation in western Sichuan after high-temperature exposure
-
摘要:
为了在井下加热改善近井区域渗流能力以提高低渗透油气藏开采效率的同时保证井壁稳定,研究了高温对四川隆昌须家河组须二段致密砂岩微观结构、力学性质及渗透性的影响,对26~1000℃高温处理后的试样进行了热重分析、电镜扫描分析(SEM)、声波测试、物理参数测定、单轴压缩试验及渗透率测试,分析高温后试样的组分、微观结构、力学参数及渗透率与温度的相关性。结果表明:在26~1000℃范围内,致密砂岩试样随温度升高不断脱去内部水分,粘土矿物含量分阶段减少,进而造成试样质量减小、视密度降低;致密砂岩岩石性能在400℃左右存在一个阈值温度,当致密砂岩高于400℃时,其抗压强度及抗变形能力急剧降低;内部裂缝网络随着温度的增高,裂缝数量不断增多,裂缝网络规模不断增大,导致高温后岩样渗透率不断增加,且增速随温度不断增大,表明将油气井加热温度控制在400℃以上并增大加热范围有利于提高单井产能。研究结果可为致密砂岩气藏中实施电加热增产技术时判断井筒安全性及单井产能增产效果提供一定参考。
Abstract:This study aims to boost the seepage capacity in the near-well area by the downhole heating so as to improve the production efficiency of low-permeability reservoir while ensuring the sidewall stability. Taking the second member of the Xujiahe Formation in Longchang as the subject, the effect of high temperature on the microstructure, mechanical property and permeability of tight sandstones were studied. The samples underwent thermogravimetric analysis, scanning electron microscopy (SEM), acoustic wave test, physical parameter measurement, uniaxial compression test and permeability test after high-temperature exposure in the range of 26 ℃ to 1000 ℃, and temperature's relevance to the composition, microstructure, mechanical parameter and permeability were analyzed. The test results showed that the internal moisture of the samples was removed continuously with the increase of temperature, and the content of clay minerals decreased by stages in the range of 26 ℃ to 1000 ℃, which led to the decrease of sample mass and apparent density. There was a threshold temperature at about 400 ℃ for the performance of tight sandstone. When the temperature was higher than 400 ℃, the compressive strength and deformation resistance of the samples decreased sharply. With the increase of temperature, more internal fractures emerged and the network size was enlarged, leading to the continuous growing increase of permeability. Therefore, it is considered that keeping the downhole heating temperature above 400 ℃ and expanding the heating range as well are conducive to improving the productivity of single well. The findings of this study are of value for evaluating the wellbore stability and stimulation effect of single well while applying the electric heating technology in tight sandstone reservoirs.
-
Key words:
- high-temperature heating /
- tight sandstone /
- wave velocity /
- permeability /
- mechanical properties
-
-
BABADAGLI T, ER V, NADERI K, et al., 2010. Use of biodiesel as an additive in thermal recovery of heavy oil and bitumen[J]. Journal of Canadian Petroleum Technology, 49(11): 43-48. doi: 10.2118/141302-PA
CHEN L J, WU Z, QIN B D, et al., 2005a. Mechanical characteristics and cracking mechanism of coal roof sandstone under high temperature[J]. Journal of Chongqing University, 28(5): 123-126. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-FIVE200505032.htm
CHEN L J, ZHAO H B, GU H T, et al., 2005b. Study on microstoructure of coal roof sandstone under high temperature[J]. Journal of China University of Mining & Technology, 34(4): 443-446. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD200504008.htm
DING Q L, JU F, MAO X B, et al., 2016. Experimental investigation of the mechanical behavior in unloading conditions of sandstone after high-temperature treatment[J]. Rock Mechanics and Rock Engineering, 49(7): 2641-2653. doi: 10.1007/s00603-016-0944-x
DING Z Y, CAO D Y, WANG L, et al., 2019. Study on occurrence regularity of coal-based graphite in kekeng mining area in Zhangping, Fujian province[J]. Journal of Geomechanics, 25(2): 198-205. (in Chinese with English abstract)
FITCH J P, MINTER R B, 1976. Chemical diversion of heat will improve thermal oil recovery[C]//SPE annual fall technical conference and exhibition. New Orleans, Louisiana: Society of Petroleum Engineers: 10.
GÉRAUD Y, MAZEROLLE F, RAYNAUD S, 1992. Comparison between connected and overall porosity of thermally stressed granites[J]. Journal of Structural Geology, 14(8-9): 981-990. doi: 10.1016/0191-8141(92)90029-V
HOMAND-ETIENNE F, HOUPERT R, 1989. Thermally induced microcracking in granites: characterization and analysis[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 26(2): 125-134. http://www.sciencedirect.com/science/article/pii/0148906289900016
JAMALUDDIN A K M, BENNION D B, THOMAS F B, et al., 2000. Application of heat treatment to enhance permeability in tight gas reservoirs[J]. Journal of Canadian Petroleum Technology, 39(11): 19-24. http://www.researchgate.net/publication/254540495_Application_of_Heat_Treatment_to_Enhance_Permeability_In_Tight_Gas_Reservoirs
LI G, CHEN Z, CHEN Y J, et al., 2017. Study on the method of relieving water-lock damage in tight sandstone gas reservoir by high-temperature heating[C]//IFEDC 2017.2155-2161. (in Chinese)
LI G, MENG Y F, DONG Z X, et al., 2007. Mechanisms and significance of microfractures generated by microwave heating in sandstone reservoirs[J]. Petroleum Exploration and Development, 34(1): 93-97. (in Chinese with English abstract) http://www.researchgate.net/publication/287653429_Mechanisms_and_significance_of_microfractures_generated_by_microwave_heating_in_sandstone_reservoirs
LI L, LIN M Z, LIU K M, et al., 1990. Microscpic study on the strength, deformation and fracture characteristics of rocks after heated[J]. Rock and Soil Mechanics, 11(4): 51-61. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX199004006.htm
LIANG B, GAO H M, LAN Y W, 2005. Theoretical analysis and experimental study on relation between rock permeability and temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 24(12): 2009-2012. (in Chinese with English abstract) http://www.oalib.com/paper/1485284
LIU J R, QIN J S, WU X D, 2001. Experimental study on relation between temperature and rocky permeability[J]. Journal of the University of Petroleum, China, 25(4): 51-53. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX200104015.htm
LIU J R, WU X D, 2003. Discussion of the permeability increasing mechanism of thermal treated rock[J]. Oil Drilling & Production Technology, 25(5): 43-47. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYZC200305012.htm
LIU J R, WU X D, 2008. Microscopic experiment of thermal treated rock[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 30(4): 15-18. (in Chinese with English abstract) http://zk.swpuxb.com/CN/abstract/abstract183.shtml
LIU S, XU J Y, 2013. Study on dynamic characteristics of marble under impact loading and high temperature[J]. International Journal of Rock Mechanics and Mining Sciences, 62: 51-58. doi: 10.1016/j.ijrmms.2013.03.014
MA Y S, 2018. Experimental study on rock mechanical properties under real-time high temperature[D]. Xuzhou: China University of Mining and Technology. (in Chinese with English abstract)
MENG T, LIU R C, MENG X X, et al., 2019. Evolution of the permeability and pore structure of transversely isotropic calcareous sediments subjected to triaxial pressure and high temperature[J]. Engineering Geology, 253: 27-35. doi: 10.1016/j.enggeo.2019.03.007
QIN B D, HE J, CHEN L J, 2009. Experimental research on mechanical properties of limestone and sandstone under high temperature[J]. Journal of Geomechanics, 15(3): 253-261. (in Chinese with English abstract) http://www.researchgate.net/publication/292235094_Experimental_research_on_mechanical_properties_of_limestone_and_sandstone_under_high_temperature
SANG Z N, ZHOU Y S, HE C R, et al., 2001. An experimental study on the brittle-plastic transition in gabbro[J]. Journal of Geomechanics, 7(2): 130-138. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX200102005.htm
SHAO J X, 2018. Experimental study on the damage evolution of sandstone under thermos-mechanical coupling[D]. Taiyuan: Taiyuan University of Technology. (in Chinese)
SIRDESAI N N, SINGH T N, PATHEGAMA GAMAGE R, 2017. Thermal alterations in the poro-mechanical characteristic of an Indian sandstone-a comparative study[J]. Engineering Geology, 226: 208-220. doi: 10.1016/j.enggeo.2017.06.010
SU C D, GUO W B, LI X S, 2008. Experimental research on mechanical properties of coarse sandstone after high temperatures[J]. Chinese Journal of Rock Mechanics and Engineering, 27(6): 1162-1170. (in Chinese with English abstract) http://www.oalib.com/paper/1485223
WANG Y W, WANG Y P, MENG X L, et al., 2019. Organic matter pyrolysis kinetics and formation permeability variation during upgrading process of low-maturity shale oil[J]. Oil & Gas Geology, 40(3): 678-684. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SYYT201903024.htm
WU G, XIE A G, ZHANG L, 2007. Mechanical charactistics of sandstone after high temperatures[J]. Chinese Journal of Rock Mechanics and Engineering, 26(10): 2110-2116. (in Chinese with English abstract) http://www.oalib.com/paper/1483091
XU X L, GAO F, GAO Y N, et al., 2008. Effect of high temperatures on the mechanical characteristics and crystal structure of Granite[J]. Journal of China University of Mining & Technology, 37(3): 402-406. (in Chinese with English abstract) http://www.cqvip.com/QK/71135X/201107/27374338.html
XUE R X, 2008. Development trends of heavy oil extraction technology at home and abroad[J]. Science and Technology Innovation Herald(27): 25. (in Chinese)
YANG L N, JIANG Z Q, ZHANG W Q, et al., 2016. Mechanical properties of sandstone after high temperature[J]. China Earthquake Engineering Journal, 38(2): 299-302. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZBDZ201602018.htm
YE G Q, CAO H, GAO Q, et al., 2019. Numerical simulation study on the influence of particle proportion on rock mechanics characteristics[J]. Journal of Geomechanics, 25(6): 1129-1137. (in Chinese with English abstract)
ZENG Z P, WANG Q J, LI J, et al., 2019. Study on seepage characteristics of tight reservoirs under multi-field coupling[J]. Journal of Geomechanics, 25(6): 1068-1074. (in Chinese with English abstract)
ZHANG Y, WAN Z J, ZHAO Y S, 2007. Meso-experiment of fine sandstone thermal crack laws[J]. Journal of Liaoning Technical University, 26(4): 529-531. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-FXKY200704014.htm
ZHANG Y, ZHANG X, ZHAO Y S, et al., 2005. Process of sandstone thermal cracking[J]. Chinese Journal of Geophysics, 48(3): 656-659. (in Chinese with English abstract) http://onlinelibrary.wiley.com/doi/10.1002/cjg2.706/full
丁正云, 曹代勇, 王路, 等, 2019. 福建漳平可坑矿区煤系石墨赋存规律研究[J]. 地质力学学报, 25(2): 198-205. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190205&journal_id=dzlxxb
谌伦建, 吴忠, 秦本东, 等, 2005a. 煤层顶板砂岩在高温下的力学特性及破坏机理[J]. 重庆大学学报, 28(5): 123-126. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE200505032.htm
谌伦建, 赵洪宝, 顾海涛, 等, 2005b. 煤层顶板砂岩在高温下微观结构变化的研究[J]. 中国矿业大学学报, 34(4): 443-446. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200504008.htm
李皋, 孟英峰, 董兆雄, 等, 2007. 砂岩储集层微波加热产生微裂缝的机理及意义[J]. 石油勘探与开发, 34(1): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200701019.htm
李皋, 陈泽, 陈一健, 等, 2017. 地层高温加热解除致密砂岩气藏水锁损害方法研究[C]//2017油气田勘探与开发国际会议(IFEDC 2017)论文集. 2155-2161.
李力, 林睦曾, 刘康敏, 等, 1990. 岩石受热后的强度、变形破坏特性的微观研究[J]. 岩土力学, 11(4): 51-61. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199004006.htm
梁冰, 高红梅, 兰永伟, 2005. 岩石渗透率与温度关系的理论分析和试验研究[J]. 岩石力学与工程学报, 24(12): 2009-2012. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200512001.htm
刘均荣, 秦积舜, 吴晓东, 2001. 温度对岩石渗透率影响的实验研究[J]. 石油大学学报(自然科学版), 25(4): 51-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200104015.htm
刘均荣, 吴晓东, 2003. 岩石热增渗机理初探[J]. 石油钻采工艺, 25(5): 43-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC200305012.htm
刘均荣, 吴晓东, 2008. 热处理岩石微观实验研究[J]. 西南石油大学学报(自然科学版), 30(4): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY200804006.htm
马阳升, 2018. 实时高温作用下岩石力学特性实验研究[D]. 徐州: 中国矿业大学.
秦本东, 何军, 谌伦建, 2009. 石灰岩和砂岩高温力学特性的试验研究[J]. 地质力学学报, 15(3): 253-261. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20090306&journal_id=dzlxxb
桑祖南, 周永胜, 何昌荣, 等, 2001. 辉长岩脆-塑性转化及其影响因素的高温高压实验研究[J]. 地质力学学报, 7(2): 130-138. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20010206&journal_id=dzlxxb
邵继喜, 2018. 热-力作用下砂岩损伤破裂演化规律实验研究[D]. 太原: 太原理工大学.
苏承东, 郭文兵, 李小双, 2008. 粗砂岩高温作用后力学效应的试验研究[J]. 岩石力学与工程学报, 27(6): 1162-1170. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200806012.htm
王益维, 汪友平, 孟祥龙, 等, 2019. 低成熟度页岩油加热改质热解动力学及地层渗透性[J]. 石油与天然气地质, 40(3): 678-684. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903024.htm
吴刚, 邢爱国, 张磊, 2007. 砂岩高温后的力学特性[J]. 岩石力学与工程学报, 26(10): 2110-2116. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200710021.htm
徐小丽, 高峰, 高亚楠, 等, 2008. 高温后花岗岩力学性质变化及结构效应研究[J]. 中国矿业大学学报, 37(3): 402-406. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200803025.htm
薛瑞新, 2008. 国内外稠油开采技术研发趋势[J]. 科技创新导报(27): 25. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXDB200827022.htm
杨礼宁, 姜振泉, 张卫强, 等, 2016. 高温作用后砂岩力学性质研究[J]. 地震工程学报, 38(2): 299-302. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201602018.htm
叶功勤, 曹函, 高强, 等, 2019. 颗粒配比对岩石力学特征影响的数值模拟研究[J]. 地质力学学报, 25(6): 1129-1137. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190614&journal_id=dzlxxb
曾治平, 王千军, 李静, 等, 2019. 多场耦合作用下致密储层渗流特性研究[J]. 地质力学学报, 25(6): 1068-1074. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190607&journal_id=dzlxxb
张渊, 张贤, 赵阳升, 等, 2005. 砂岩的热破裂过程[J]. 地球物理学报, 48(3): 656-659. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200503024.htm
张渊, 万志军, 赵阳升, 2007. 细砂岩热破裂规律的细观实验研究[J]. 辽宁工程技术大学学报, 26(4): 529-531. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY200704014.htm
-